Function spaces: Let L be the space of functions on $[0, \infty]$ equipped with norm $\|\cdot\|_{L}$. For any function u on $[0, \infty]$, let u_{τ} denote the truncation

$$
u_{\tau}(t)= \begin{cases}u(t), & t \leq \tau \\ 0, & t>\tau\end{cases}
$$

And define the extended space L_{e} as the set of all functions such that the truncation $u_{\tau} \in L$ for all $\tau \geq 0$. It is clear that $L \subset L_{e}$.
Input-output stability: In Khalil, a nonlinear input-output system, denoted by H, is called L stable with finite gain if there are positive constants $\gamma, \beta>0$ such that

$$
\begin{equation*}
\left\|(H u)_{\tau}\right\|_{L} \leq \gamma\left\|u_{\tau}\right\|_{L}+\beta, \quad \forall u \in L_{e}, \quad \forall \tau \geq 0 \tag{0.1}
\end{equation*}
$$

We want to compare this definition to the definition

$$
\begin{equation*}
\|H u\|_{L} \leq \gamma\|u\|_{L}+\beta, \quad \forall u \in L \tag{0.2}
\end{equation*}
$$

where the truncation is removed.
Assumptions: We make the following assumptions:

1. for $u \in L_{e},\left\|u_{\tau}\right\|_{L}$ is a non-decreasing function of τ
2. for $u \in L,\left\|u_{\tau}\right\|_{L} \rightarrow\|u\|_{L}$ as $\tau \rightarrow \infty$
3. H is causal, i.e. $(H u)_{\tau}=\left(H u_{\tau}\right)_{\tau}$ for all $u \in L_{e}$ and $\tau \geq 0$.

The assumption seems to be true for all L_{p} norms.
Equivalency: We show that the two definitions are equivalent under these assumptions. First, let's assume (0.1) is true and we conclude (0.2). Let $u \in L$. Then, $u \in L_{e}$. Therefore, by (0.1)

$$
\left\|(H u)_{\tau}\right\|_{L} \leq \gamma\left\|u_{\tau}\right\|_{L}+\beta \leq \gamma\|u\|_{L}+\beta
$$

where we used $\left\|u_{\tau}\right\|_{L}<\|u\|_{L}<\infty$ in the second inequality. The LHS of inequality is nondecreasing and bounded from above. Therefore, it has a limit which is equal to $\|H u\|_{L}$. Therefore, as $\tau \rightarrow \infty$

$$
\|H u\|_{L} \leq \gamma\|u\|_{L}+\beta
$$

which concludes (0.2).
To show the other direction, assume (0.2) is true. Take $u \in L_{e}$. Therefore, $u_{\tau} \in L$ for all $\tau \geq 0$. By application of (0.2) on u_{τ}

$$
\left\|H u_{\tau}\right\|_{L} \leq \gamma\left\|u_{\tau}\right\|_{L}+\beta
$$

Note that $\left\|H u_{\tau}\right\|_{L} \geq\left\|\left(H u_{\tau}\right)_{\tau}\right\|_{L}=\left\|(H u)_{\tau}\right\|_{L}$ where the first inequality follows from assumption 1 and the identity follows from causality. Therefore,

$$
\left\|(H u)_{\tau}\right\|_{L}=\left\|\left(H u_{\tau}\right)_{\tau}\right\|_{L} \leq\|H u \tau\|_{L} \leq \gamma\left\|u_{\tau}\right\|_{L}+\beta
$$

which concludes (0.1).
Conclusion: The two definitions seems to be equivalent under the assumptions. And the assumptions seems to be valid for L_{p} norms that we are interested in. Unless there is a gap in the proof and there is some technicality that was missed. It will be great to see examples that satisfy the stability definition (0.2) but not (0.1).

