Function spaces: Let L be the space of functions on $[0, \infty]$ equipped with norm $\|\cdot\|_L$. For any function u on $[0, \infty]$, let u_τ denote the truncation

$$u_{\tau}(t) = \begin{cases} u(t), & t \le \tau \\ 0, & t > \tau \end{cases}$$

And define the extended space L_e as the set of all functions such that the truncation $u_{\tau} \in L$ for all $\tau \geq 0$. It is clear that $L \subset L_e$.

Input-output stability: In Khalil, a nonlinear input-output system, denoted by H, is called *L*-stable with finite gain if there are positive constants $\gamma, \beta > 0$ such that

$$\|(Hu)_{\tau}\|_{L} \leq \gamma \|u_{\tau}\|_{L} + \beta, \quad \forall u \in L_{e}, \quad \forall \tau \geq 0$$

$$(0.1)$$

We want to compare this definition to the definition

$$||Hu||_L \le \gamma ||u||_L + \beta, \quad \forall u \in L \tag{0.2}$$

where the truncation is removed.

Assumptions: We make the following assumptions:

- 1. for $u \in L_e, \|u_{\tau}\|_L$ is a non-decreasing function of τ
- 2. for $u \in L$, $||u_{\tau}||_L \to ||u||_L$ as $\tau \to \infty$
- 3. *H* is causal, i.e. $(Hu)_{\tau} = (Hu_{\tau})_{\tau}$ for all $u \in L_e$ and $\tau \ge 0$.

The assumption seems to be true for all L_p norms.

Equivalency: We show that the two definitions are equivalent under these assumptions. First, let's assume (0.1) is true and we conclude (0.2). Let $u \in L$. Then, $u \in L_e$. Therefore, by (0.1)

$$\|(Hu)_{\tau}\|_{L} \leq \gamma \|u_{\tau}\|_{L} + \beta \leq \gamma \|u\|_{L} + \beta$$

where we used $||u_{\tau}||_{L} < ||u||_{L} < \infty$ in the second inequality. The LHS of inequality is nondecreasing and bounded from above. Therefore, it has a limit which is equal to $||Hu||_{L}$. Therefore, as $\tau \to \infty$

$$\|Hu\|_L \le \gamma \|u\|_L + \beta$$

which concludes (0.2).

To show the other direction, assume (0.2) is true. Take $u \in L_e$. Therefore, $u_{\tau} \in L$ for all $\tau \geq 0$. By application of (0.2) on u_{τ}

$$\|Hu_{\tau}\|_{L} \leq \gamma \|u_{\tau}\|_{L} + \beta$$

Note that $||Hu_{\tau}||_{L} \ge ||(Hu_{\tau})_{\tau}||_{L} = ||(Hu)_{\tau}||_{L}$ where the first inequality follows from assumption 1 and the identity follows from causality. Therefore,

$$\|(Hu)_{\tau}\|_{L} = \|(Hu_{\tau})_{\tau}\|_{L} \le \|Hu\tau\|_{L} \le \gamma \|u_{\tau}\|_{L} + \beta$$

which concludes (0.1).

Conclusion: The two definitions seems to be equivalent under the assumptions. And the assumptions seems to be valid for L_p norms that we are interested in. Unless there is a gap in the proof and there is some technicality that was missed. It will be great to see examples that satisfy the stability definition (0.2) but not (0.1).