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Bayes’ law

Problem:

Hidden random variable X

Observed random variable Y

What is the conditional probability distribution of X given Y ? (posterior)

Bayes’ law: PX|Y =
PXPY |X

PY

Simple to express, but difficult to implement numerically
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Illustrative example
Ensemble Kalman filter (EnKF)

Setup:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

EnKF:

(Xi, Y i) ∼ PX,Y

fit a Gaussian

conditioning formula for Gaussians
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G. Evensen. “Data Assimilation. The Ensemble Kalman Filter” (2006)
S. Reich, “A dynamical systems framework for intermittent data assimilation” (2011)
E. Calvello, S. Reich, and A. M. Stuart, “Ensemble kalman methods: a mean field perspective” (2022)
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Illustrative example
Importance sampling (IS) particle filter

Example:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

Importance sampling (IS):

Xi i.i.d∼ N (0, 1)

wi ∝ PY =1|X=Xi

PX|Y =1 ≈
N∑
i=1

wiδXi

−3 −2 −1 0 1 2 3
X

PX|Y=1

small noise regime: ϵ→ 0

This is the main reason for the curse of dimensionality of IS-based particle filters

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)
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Control and coupling techniques

Approximate McKean-Vlasov representations [Crisan & Xiong 2010]

Particle flow filters [Daum et. al. 2010]

A dynamical systems framework for data assimilation [Reich. 2011]

Mean-field control approach [Yang, Mehta, Meyn, 2011]
→ Feedback Particle Filter (FPF)

Posterior Matching via optimal transportation [Ma & Coleman, 2011]

Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

Ensemble Kalman methods: a mean field perspective [Calvello et. al. 2022]

Coupling techniques for nonlinear ensemble filtering [Spantini et. al. , 2022]

. . .

This talk: Conditioning with optimal transport map
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Conditioning with transport maps

Xi ∼ PX −→ T (Xi, y) ∼ PX|Y =y

Example:

Consider Y = X. Then, PX|Y =y = δy is represented by the map T (x, y) = y

Consider jointly Gaussian (X,Y ). Then PX|Y =y is represented by the (stochastic)
map X 7→ X +K(y − Y )

Questions: In a general setting,

does the map exists?

how to numerically find it?
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Background on optimal transportation theory
Monge problem and Brenier’s result

Given two random variables U ∼ PU and V ∼ PV

find a map x 7→ T (x) that transports PU to PV , i.e. T#PU = PV

with minimal transportation cost ∥T (x)− x∥2

Questions:

Does the optimal map exists? Yes, as long as PU admits Lebesgue density

How to numerically find it? semi-dual Kantorovich problem

max
f∈c-concave

min
T

E
[
1

2
∥T (U)− U∥2 − f(T (U)) + f(V )

]
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Illustrative example
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Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

−−−−−−−−−−−−−→

small noise limit
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Conditioning with optimal transport map
Variational formulation of the Bayes’ law

Bayes law: PX|Y =
PXPY |X

PY

= T (·;Y )#PX

Conditional max-min formulation:

max
f∈c-concavex

min
T

E
[
1

2
∥T (X̄, Y )− X̄∥2 − f(T (X̄, Y ), Y ) + f(X;Y )

]

Computational properties:

Only requires samples (Xi, Yi) ∼ PXY (data-driven/simulation based)

Enables construction of “approximate” posterior distributions

Allows application of ML tools (stochastic optimization and neural nets)
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Conditioning with optimal transport map
Theoretical analysis

Variational problem: min
f

max
T

J(f, T ;PX,Y )

max-min optimality gap: ϵ(f, T )

(Conditional) Brenier’s theorem

(Well-posedness) If PX admits (Lebesgue) density, then, there exists a unique pair
(f, T ) that solves the variational problem and

T (·, y)#PX = PX|Y =y, a.e y

(Sensitivity) Let (f, T ) be a possibly non-optimal pair. Assume

x 7→ 1

2
∥x∥2 − f(x, y) is α-strongly convex for all y. Then,

d(T (·, Y )#PX , PX|Y ) ≤
√

4

α
ϵ(f, T ).

B. Hosseini, A. Hsu, A. Taghvaei Conditional Optimal Transport on Function Spaces (2023)
G. Carlier, V. Chernozhukov, A. Galichon, Vector quantile regression: an optimal trans- port approach.v (2016).
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d(T (·, Y )#PX , PX|Y ) ≤
√

4

α
ϵ(f, T ).
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Conditioning with optimal transport map
Theoretical analysis

Variational problem: min
f

max
T

J(f, T ;PX,Y )

max-min optimality gap: ϵ(f, T )
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Outline

Part I: Bayes’ law and its fundamental challenges

Part II: Conditioning with optimal transport maps

Part II: Application to nonlinear filtering
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Nonlinear filtering problem

Model:

Xt ∼ a(· | Xt−1), X0 ∼ π0

Yt ∼ h(· | Xt)

Xt is the state

Yt is the observation

dynamic and observation models are available as simulators

Questions: Given history of observation Y1:t := {Y1, . . . , Yt},
What is the most likely value of Xt?

What is the probability of Xt ∈ A?

What is the best m.s.e estimate for Xt?

. . .

Answer: given by the conditional distribution πt = PXt|Y1:t
(posterior)

Nonlinear filtering: numerical approximation of the posterior πt for all t.
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Optimal transport (OT) filter
Summary

Mathematical model:

Nonlinear filtering: compute the posterior πk = P(Xk|Y1:k)

OT approach:

Variational problem:

Tk ← max
f∈F

min
T∈T

J(f, T ;
1

N

N∑
i=1

δ(Xi
k
,Y i

k
))
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = Xt + σWWt,

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = X
2
t + σWWt,

0 1 2 3 4 5
time

0.1

0.2

0.3

0.4

0.5

M
M
D

EnKF
OT
SIR

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example: Lorenz 63

Trajectory of the particles

mean-squared error (mse) in estimating the state
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

True image

Observed part

     EnKF      OT      SIR
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OT
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Data-driven setting

Problem setup:

Xt ∼ a(· | Xt−1), X0 ∼ π0

Yt ∼ h(· | Xt)

Xt is the state

Yt is the observation

the dynamic and observation models are unknown

Objective:

given: {Xj
0 , (X

j
1 , Y

j
1 ), . . . , (X

j
tf
, Y j

tf
)}Jj=1

compute: πt := P (Xt|Yt, . . . , Y1), ∀t ≥ 0

for a new set of observations {Yt, . . . , Y1}
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Data-driven setting
Solution approach

Exact posterior:

πt := PX0∼π0(Xt|Yt, . . . , Y1)

Step 1: Truncated posterior

πµ
t,s := PXs∼µ(Xt|Yt, . . . , Ys+1)

Step 2: OT representation

πµ
t,s = T (·, Yt, . . . , Ys)#µ where

T ← max
f∈F

min
T∈T

J(f, T ;PXt,Yt,...,Ys+1)

Step 3: Stationary assumption

PXt,Yt,...,Ys+1 = PXw,Yw,...,Y1 where w := t− s

Step 4: Use training data to approximate PXw,Yw,...,Y1
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Data-driven setting

Error analysis

Assume

The exact filter is exponentially stable

The process (Xt, Yt) is stationary

µ is equal to the stationary distribution of Xt and M := sup
t

d(πt, µ) <∞

(f, T ) is a possibly non-optimal pair with max-min gap ϵ(f, T )

The function x 7→ 1

2
∥x∥2− f(x, yw, . . . , y1) is α-strongly convex for all (yw, . . . , y1).

Then,

d(T (·, Yt, . . . , Yt−w)#µ, πt) ≤ CλwM +

√
4

α
ϵ(f, T )
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Numerical example

Model:

Xt = aXt−1 + σVt

Yt = h(Xt) + σWt
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Numerical example

Model:

Xt = aXt−1 + σVt

Yt = X2
t + σWt

Amirhossein Taghvaei 17 / 17 Amirhossein Taghvaei



Numerical example
Lorenz 63 model

Ẋ = f(X), X0 ∼ N (µ0, σ
2
0I3),

Yt = Xt(1) +Wt, Wt ∼ N (0, σ2), ∆t = 0.01
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Numerical example
Lorenz 63 model

Ẋ = f(X), X0 ∼ N (µ0, σ
2
0I3),

Yt = Xt(1) +Wt, Wt ∼ N (0, σ2), ∆t = 0.01

Offline training time: 46.29 seconds

One-time step update:

Method EnKF SIR OTPF OT-DDF

time 1.7× 10−4 2.0× 10−4 6.8× 10−2 1.5× 10−4
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