Nonlinear Filtering with Brenier Optimal Transport Maps

Presented at the 60th Annual Allerton Conference on Communication, Control, and Computing, Urbana, Illinois

Amirhossein Taghvaei

Department of Aeronautics & Astronautics University of Washington, Seattle

Sep 25, 2024

This talk

References:

- Data-Driven Approximation of Stationary Nonlinear Filters with Optimal Transport Maps Mohammad Al-Jarrah, Bamdad Hosseini, Amirhossein Taghvaei IEEE Conference on Decision and Control (CDC), Milan, 2024
- Nonlinear Filtering with Brenier Optimal Transport Maps Mohammad Al-Jarrah, Niyizhen Jin, Bamdad Hosseini, Amirhossein Taghvaei International Conference of Machine Learning (ICML), Vienna, 2024
- **Dotimal Transport Particle Filters** Mohammad Al-Jarrah, Amirhossein Taghvaei, Bamdad Hosseini IEEE Conference on Decision and Control (CDC), Singapore, 2023
- An optimal transport formulation of Bayes' law for nonlinear filtering algorithms Amirhossein Taghvaei, Bamdad Hosseini IEEE Conference on Decision and Control (CDC), Cancun, 2022

This talk

References:

- Data-Driven Approximation of Stationary Nonlinear Filters with Optimal Transport Maps Mohammad Al-Jarrah, Bamdad Hosseini, Amirhossein Taghvaei IEEE Conference on Decision and Control (CDC), Milan, 2024
- Nonlinear Filtering with Brenier Optimal Transport Maps Mohammad Al-Jarrah, Niyizhen Jin, Bamdad Hosseini, Amirhossein Taghvaei International Conference of Machine Learning (ICML), Vienna, 2024
- **Dotimal Transport Particle Filters** Mohammad Al-Jarrah, Amirhossein Taghvaei, Bamdad Hosseini IEEE Conference on Decision and Control (CDC), Singapore, 2023
- An optimal transport formulation of Bayes' law for nonlinear filtering algorithms Amirhossein Taghvaei, Bamdad Hosseini IEEE Conference on Decision and Control (CDC), Cancun, 2022

Outline

- **Part I:** Bayes' law and its fundamental challenges
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part III:** Application to nonlinear filtering

Outline

Part I: Bayes' law and its fundamental challenges

-
- **Part III:** Application to nonlinear filtering

Bayes' law

Problem:

- **Hidden random variable** X
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Bayes' law

Problem:

- **Hidden random variable** X
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Bayes' law

Problem:

- **Hidden random variable** X
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Simple to express, but difficult to implement numerically

Setup:

■
$$
X \sim \mathcal{N}(0, 1)
$$

\n■ $Y = \frac{1}{2}X^2 + \epsilon W$
\n■ $P_{X|Y=1} = ?$

-
-
-

- G. Evensen. "Data Assimilation. The Ensemble Kalman Filter" (2006)
- S. Reich, "A dynamical systems framework for intermittent data assimilation" (2011)
- E. Calvello, S. Reich, and A. M. Stuart, "Ensemble kalman methods: a mean field perspective" (2022)

Setup:

■
$$
X \sim \mathcal{N}(0, 1)
$$

\n■ $Y = \frac{1}{2}X^2 + \epsilon W$
\n■ $P_{X|Y=1} = ?$

EnKF: $(X^i, Y^i) \sim P_{X,Y}$

fit a Gaussian

G. Evensen. "Data Assimilation. The Ensemble Kalman Filter" (2006)

- S. Reich, "A dynamical systems framework for intermittent data assimilation" (2011)
- E. Calvello, S. Reich, and A. M. Stuart, "Ensemble kalman methods: a mean field perspective" (2022)

Setup:

■
$$
X \sim \mathcal{N}(0, 1)
$$

\n■ $Y = \frac{1}{2}X^2 + \epsilon W$
\n■ $P_{X|Y=1} = ?$

EnKF:

$$
(X^i, Y^i) \sim P_{X,Y}
$$

fit a Gaussian

- S. Reich, "A dynamical systems framework for intermittent data assimilation" (2011)
- E. Calvello, S. Reich, and A. M. Stuart, "Ensemble kalman methods: a mean field perspective" (2022)

G. Evensen. "Data Assimilation. The Ensemble Kalman Filter" (2006)

Setup:

■
$$
X \sim \mathcal{N}(0, 1)
$$

\n■ $Y = \frac{1}{2}X^2 + \epsilon W$
\n■ $P_{X|Y=1} = ?$

EnKF:

- $(X^i, Y^i) \sim P_{X,Y}$
- fit a Gaussian
- conditioning formula for Gaussians

- S. Reich, "A dynamical systems framework for intermittent data assimilation" (2011)
- E. Calvello, S. Reich, and A. M. Stuart, "Ensemble kalman methods: a mean field perspective" (2022)

G. Evensen. "Data Assimilation. The Ensemble Kalman Filter" (2006)

Importance sampling (IS) particle filter

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Importance sampling (IS) particle filter

Example:

Importance sampling (IS):

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Importance sampling (IS) particle filter

Example:

 \blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$ $P_{X|Y=1}$ =?

Importance sampling (IS):

 $X^i \stackrel{\mathsf{i.i.d}}{\sim} \mathcal{N}(0,1)$

$$
w^i \propto P_{Y=1|X=X^i}
$$

$$
P_{X|Y=1} \approx \sum^{N} w^{i} \delta_{X^{i}}
$$

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Importance sampling (IS) particle filter

Example:

\blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$ $P_{X|Y=1}$ =?

Importance sampling (IS):

 $X^i \stackrel{\mathsf{i.i.d}}{\sim} \mathcal{N}(0,1)$ $w^i \propto P_{Y=1|X=X^i}$

$$
\blacksquare P_{X|Y=1} \approx \sum_{i=1}^{N} w^i \delta_{X^i}
$$

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Importance sampling (IS) particle filter

Example:

\blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$ $P_{X|Y=1}$ =?

Importance sampling (IS):

■
$$
X^i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1)
$$

■ $w^i \propto P_{Y=1|X=X^i}$

Likelihood · Particle weight $\frac{1}{3}$ $\frac{1}{2}$ $\overline{-1}$

small noise regime: $\epsilon \to 0$

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Importance sampling (IS) particle filter

 \blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$

 $P_{X|Y=1}$ =?

Importance sampling (IS):

 $\frac{1}{2}X^2 + \epsilon W$

small noise regime: $\epsilon \to 0$

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Control and coupling techniques

- **Approximate McKean-Vlasov representations [Crisan & Xiong 2010]**
- Particle flow filters [Daum et. al. 2010]
- A dynamical systems framework for data assimilation [Reich. 2011]
- Mean-field control approach [Yang, Mehta, Meyn, 2011]
	- \rightarrow Feedback Particle Filter (FPF)

. . .

- **Posterior Matching via optimal transportation** [Ma & Coleman, 2011]
- Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]
- Ensemble Kalman methods: a mean field perspective [Calvello et. al. 2022]
- Coupling techniques for nonlinear ensemble filtering [Spantini et. al. , 2022]

This talk: Conditioning with optimal transport map

Control and coupling techniques

- **Approximate McKean-Vlasov representations [Crisan & Xiong 2010]**
- Particle flow filters [Daum et. al. 2010]
- A dynamical systems framework for data assimilation [Reich. 2011]
- Mean-field control approach [Yang, Mehta, Meyn, 2011]
	- \rightarrow Feedback Particle Filter (FPF)

. . .

- **Posterior Matching via optimal transportation** [Ma & Coleman, 2011]
- Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]
- Ensemble Kalman methods: a mean field perspective [Calvello et. al. 2022]
- Coupling techniques for nonlinear ensemble filtering [Spantini et. al. , 2022]

This talk: Conditioning with optimal transport map

Outline

- **Part I:** Bayes' law and its fundamental challenges
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part III:** Application to nonlinear filtering

Outline

Part I: Bayes' law and its fundamental challenges

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering

 $X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}$

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

Consider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$

map $X \mapsto X + K(y - Y)$

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

- Gonsider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$
- Gonsider jointly Gaussian (X, Y) . Then $P_{X|Y=y}$ is represented by the (stochastic) map $X \mapsto X + K(y - Y)$

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

- Gonsider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$
- Gonsider jointly Gaussian (X, Y) . Then $P_{X|Y=y}$ is represented by the (stochastic) map $X \mapsto X + K(y - Y)$

Questions: In a general setting,

-
-

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

- Gonsider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$
- Gonsider jointly Gaussian (X, Y) . Then $P_{X|Y=y}$ is represented by the (stochastic) map $X \mapsto X + K(y - Y)$

Questions: In a general setting,

- does the map exists?
-

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

- Gonsider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$
- Gonsider jointly Gaussian (X, Y) . Then $P_{X|Y=y}$ is represented by the (stochastic) map $X \mapsto X + K(y - Y)$

Questions: In a general setting,

- does the map exists?
- **how to numerically find it?**

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- **find a map** $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$
- with minimal transportation cost $\|T(x)-x\|^2$
-
-
-

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$ $\mathcal{L}_{\mathcal{A}}$

with minimal transportation cost $\|T(x)-x\|^2$

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$ $\mathcal{L}_{\mathcal{A}}$
- with minimal transportation cost $\|T(x)-x\|^2$

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$
- with minimal transportation cost $\|T(x)-x\|^2$

Questions:

-
- How to numerically find it? semi-dual Kantorovich problem

$$
\max_{f \in c\text{-concave}} \min_T \mathbb{E}\left[\frac{1}{2} \|T(U) - U\|^2 - f(T(U)) + f(V)\right]
$$

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$
- with minimal transportation cost $\|T(x)-x\|^2$

Questions:

- **Does the optimal map exists?** Yes, as long as P_U admits Lebesgue density
-

$$
\max_{f \in c\text{-concave}} \min_T \mathbb{E}\left[\frac{1}{2} \|T(U) - U\|^2 - f(T(U)) + f(V)\right]
$$

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_{\#}P_U = P_V$
- with minimal transportation cost $\|T(x)-x\|^2$

Questions:

- **Does the optimal map exists?** Yes, as long as P_U admits Lebesgue density
- How to numerically find it? semi-dual Kantorovich problem

$$
\max_{f \in c\text{-concave}} \min_T \, \mathbb{E}\left[\frac{1}{2} \Vert T(U) - U \Vert^2 - f(T(U)) + f(V) \right]
$$

Conditioning with optimal transport map Illustrative example

Conditioning with optimal transport map Illustrative example

small noise limit

Conditioning with optimal transport map

Variational formulation of the Bayes' law

Bayes law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

= $T(\cdot; Y) \# P_X$

Conditional max-min formulation:

$$
\max_{f \in \text{concave}_x} \min_T \mathbb{E}\left[\frac{1}{2} \|T(\bar{X}, Y) - \bar{X}\|^2 - f(T(\bar{X}, Y), Y) + f(X; Y)\right]
$$

-
-
- Allows application of ML tools (stochastic optimization and neural nets)

Conditioning with optimal transport map Variational formulation of the Bayes' law

Bayes law: $P_{X|Y} = \frac{P_X P_{Y|X}}{P_X}$ P_Y $=T(\cdot; Y) \# P_X$

Conditional max-min formulation:

$$
\max_{f \in \text{concave}_x} \min_T \mathbb{E}\left[\frac{1}{2} \|T(\bar{X}, Y) - \bar{X}\|^2 - f(T(\bar{X}, Y), Y) + f(X; Y)\right]
$$

- Only requires samples $(X_i, Y_i) \sim P_{XY}$ (data-driven/simulation based)
-
- Allows application of ML tools (stochastic optimization and neural nets)

Conditioning with optimal transport map Variational formulation of the Bayes' law

$$
\begin{aligned} \text{Bayes law:} \quad P_{X|Y} &= \frac{P_X P_{Y|X}}{P_Y} \\ &= T(\cdot; Y) \# P_X \end{aligned}
$$

Conditional max-min formulation:

$$
\max_{f \in c\text{-concave}_x} \ \min_T \ \mathbb{E}\left[\frac{1}{2} \|T(\bar{X},Y) - \bar{X}\|^2 - f(T(\bar{X},Y),Y) + f(X;Y) \right]
$$

-
-
- Allows application of ML tools (stochastic optimization and neural nets)

1

Conditioning with optimal transport map Variational formulation of the Bayes' law

Bayes law: $P_{X|Y} = \frac{P_X P_{Y|X}}{P_X}$ P_Y $T(Y;Y)\#P_X$

Conditional max-min formulation:

$$
\max_{f \in c\text{-concave}_x} \ \min_T \ \mathbb{E}\left[\frac{1}{2} \|T(\bar{X},Y) - \bar{X}\|^2 - f(T(\bar{X},Y),Y) + f(X;Y) \right]
$$

Computational properties:

- Only requires samples $(X_i, Y_i) \sim P_{XY}$ (data-driven/simulation based)
- **Enables construction of "approximate" posterior distributions**
- Allows application of ML tools (stochastic optimization and neural nets)

1

Conditioning with optimal transport map Theoretical analysis

- Variational problem: $\min_f \max_T J(f,T;P_{X,Y})$
- **max-min optimality gap:** $\epsilon(f,T)$

(Conditional) Brenier's theorem

 \blacksquare (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique pair (f, T) that solves the variational problem and

$$
\overline{T}(\cdot,y)\#P_X=P_{X|Y=y},\quad \text{a.e} \quad y
$$

Gensitivity) Let (f, T) be a possibly non-optimal pair. Assume $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y)$ is α -strongly convex for all y . Then,

$$
d(T(\cdot, Y) \# P_X, P_{X|Y}) \le \sqrt{\frac{4}{\alpha}} \epsilon(f, T).
$$

B. Hosseini, A. Hsu, A. Taghvaei Conditional Optimal Transport on Function Spaces (2023)

G. Carlier, V. Chernozhukov, A. Galichon, Vector quantile regression: an optimal trans- port approach.v (2016).

Conditioning with optimal transport map Theoretical analysis

- Variational problem: $\min_f \max_T J(f,T;P_{X,Y})$
- **max-min optimality gap:** $\epsilon(f,T)$

(Conditional) Brenier's theorem

 \blacksquare (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique pair $(\overline{f}, \overline{T})$ that solves the variational problem and

$$
\overline{T}(\cdot,y)\#P_X=P_{X|Y=y},\quad \text{a.e} \quad y
$$

Gensitivity) Let (f, T) be a possibly non-optimal pair. Assume $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y)$ is α -strongly convex for all y . Then,

$$
d(T(\cdot, Y)\#P_X, P_{X|Y}) \le \sqrt{\frac{4}{\alpha}}\epsilon(f, T).
$$

B. Hosseini, A. Hsu, A. Taghvaei Conditional Optimal Transport on Function Spaces (2023)

G. Carlier, V. Chernozhukov, A. Galichon, Vector quantile regression: an optimal trans- port approach.v (2016).

Conditioning with optimal transport map Theoretical analysis

- Variational problem: $\min_f \max_T J(f,T;P_{X,Y})$
- **max-min optimality gap:** $\epsilon(f,T)$

(Conditional) Brenier's theorem

 \blacksquare (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique pair $(\overline{f}, \overline{T})$ that solves the variational problem and

$$
\overline{T}(\cdot,y)\#P_X=P_{X|Y=y},\quad \text{a.e} \quad y
$$

Gensitivity) Let (f, T) be a possibly non-optimal pair. Assume $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y)$ is α -strongly convex for all y. Then,

$$
d(T(\cdot, Y)\# P_X, P_{X|Y}) \le \sqrt{\frac{4}{\alpha}\epsilon(f,T)}.
$$

B. Hosseini, A. Hsu, A. Taghvaei Conditional Optimal Transport on Function Spaces (2023)

G. Carlier, V. Chernozhukov, A. Galichon, Vector quantile regression: an optimal trans- port approach.v (2016).

Outline

- **Part I:** Bayes' law and its fundamental challenges
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part II:** Application to nonlinear filtering

Outline

- **Part I:** Bayes' law and its fundamental challenges
- **Part II:** Application to nonlinear filtering

Model:

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- X_t is the state
- Y_t is the observation

dynamic and observation models are available as simulators

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

-
-
-

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior) **Nonlinear filtering:** numerical approximation of the posterior π_t for all t.

Model:

 \blacksquare

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- X_t is the state
- Y_t is the observation
- dynamic and observation models are available as simulators

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior) **Nonlinear filtering:** numerical approximation of the posterior π_t for all t.

Model:

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- \blacksquare X_t is the state
- Y_t is the observation
- dynamic and observation models are available as simulators

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

 \blacksquare

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior)

Nonlinear filtering: numerical approximation of the posterior π_t for all t.

Model:

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- \blacksquare X_t is the state
- Y_t is the observation
- dynamic and observation models are available as simulators

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

 \blacksquare

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior)

Nonlinear filtering: numerical approximation of the posterior π_t for all t.

Optimal transport (OT) filter Summary

Mathematical model:

Nonlinear filtering: compute the posterior $\pi_k = P(X_k|Y_{1:k})$

$$
\xrightarrow{\qquad} \pi_{k-1} \xrightarrow{\qquad} \pi_k \xrightarrow{\qquad} \pi_{k+1} \xrightarrow{\qquad}
$$

OT approach:

Variational problem:

$$
T_k \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; \frac{1}{N} \sum_{i=1}^N \delta_{(X_k^i, Y_k^i)})
$$

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

\n
$$
Y_t = X_t + \sigma_W W_t,
$$

-
-
-

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

\n
$$
Y_t = X_t + \sigma_W W_t,
$$

- Ensemble Kalman filter (EnKF)
- sequential importance re-sampling (SIR)
- Optimal Transport (OT)

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

$$
Y_t = X_t^2 + \sigma_W W_t,
$$

- Ensemble Kalman filter (EnKF)
- sequential importance re-sampling (SIR)
- Optimal Transport (OT)

Optimal Transport Filter Numerical example: Lorenz 63

Trajectory of the particles $\overline{}$

Optimal Transport Filter Numerical example: Lorenz 63

Trajectory of the particles

mean-squared error (mse) in estimating the state $\mathcal{L}_{\mathcal{A}}$

Numerical example: Image in-painting

 $X \sim N(0, I_{100}),$ $Y_t = h(G(X), c_t) + W_t$ $G:\mathbb{R}^{100}\rightarrow\mathbb{R}^{28\times28}$ (pre-trained generator)

Numerical example: Image in-painting

$$
X \sim N(0, I_{100}),
$$

\n
$$
Y_t = h(G(X), c_t) + W_t,
$$

\n
$$
G: \mathbb{R}^{100} \to \mathbb{R}^{28 \times 28} \text{ (pre-trained generator)}
$$

Acknowledgments

M. Al-Jarrah N. Jin B. Hosseini NSF

References:

Problem setup:

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- X_t is the state
- Y_t is the observation
- the dynamic and observation models are unknown

Objective:

$$
\begin{aligned}\n\text{given:} \quad & \{X_0^j, (X_1^j, Y_1^j), \dots, (X_{t_f}^j, Y_{t_f}^j)\}_{j=1}^J \\
\text{compute:} \quad & \pi_t := P(X_t|Y_t, \dots, Y_1), \quad \forall t \ge 0 \\
&\text{for a new set of observations } \{Y_t, \dots, Y_1\} \end{aligned}
$$

Problem setup:

$$
X_t \sim a(\cdot \mid X_{t-1}), \quad X_0 \sim \pi_0
$$

$$
Y_t \sim h(\cdot \mid X_t)
$$

- X_t is the state
- Y_t is the observation
- the dynamic and observation models are unknown

Objective:

given:
$$
\{X_0^j, (X_1^j, Y_1^j), \ldots, (X_{t_f}^j, Y_{t_f}^j)\}_{j=1}^J
$$
\n**compute:** $\pi_t := P(X_t|Y_t, \ldots, Y_1), \quad \forall t \ge 0$ \n**for a new set of observations** $\{Y_t, \ldots, Y_1\}$

Exact posterior:

$$
\pi_t := \mathbb{P}_{X_0 \sim \pi_0}(X_t | Y_t, \ldots, Y_1)
$$

$$
\pi^{\mu}_{t,s}:=\mathbb{P}_{X_s\sim \mu}(X_t|Y_t,\ldots,Y_{s+1})
$$

Step 2: OT representation

$$
\pi_{t,s}^{\mu} = T(\cdot, Y_t, \dots, Y_s) \# \mu \quad \text{where}
$$

$$
T \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; P_{X_t, Y_t, \dots, Y_{s+1}})
$$

$$
P_{X_t,Y_t,\ldots,Y_{s+1}}=P_{X_w,Y_w,\ldots,Y_1}\quad\text{where}\quad w:=t-s
$$

Step 4: Use training data to approximate $P_{X_w, Y_w, ..., Y_1}$

Exact posterior:

$$
\pi_t := \mathbb{P}_{X_0 \sim \pi_0}(X_t | Y_t, \dots, Y_1)
$$

Step 1: Truncated posterior

$$
\pi^{\mu}_{t,s} := \mathbb{P}_{X_s \sim \mu}(X_t|Y_t,\ldots,Y_{s+1})
$$

$$
\pi_{t,s}^{\mu} = T(\cdot, Y_t, \dots, Y_s) \# \mu \quad \text{where}
$$
\n
$$
T \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; P_{X_t, Y_t, \dots, Y_{s+1}})
$$

 $P_{X_t, Y_t,...,Y_{s+1}} = P_{X_w, Y_w,...,Y_1}$ where $w := t - s$

Step 4: Use training data to approximate P_{X,w,Y,w,\ldots,Y_1}

Exact posterior:

$$
\pi_t := \mathbb{P}_{X_0 \sim \pi_0}(X_t | Y_t, \dots, Y_1)
$$

Step 1: Truncated posterior

$$
\pi_{t,s}^{\mu} := \mathbb{P}_{X_s \sim \mu}(X_t | Y_t, \ldots, Y_{s+1})
$$

Step 2: OT representation

$$
\pi^{\mu}_{t,s} = T(\cdot, Y_t, \dots, Y_s) \# \mu \quad \text{where}
$$
\n
$$
T \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; P_{X_t, Y_t, \dots, Y_{s+1}})
$$

 $P_{X_t, Y_t,...,Y_{s+1}} = P_{X_w, Y_w,...,Y_1}$ where $w := t - s$

Step 4: Use training data to approximate P_{X,w,Y,w,\ldots,Y_1}

Exact posterior:

$$
\pi_t := \mathbb{P}_{X_0 \sim \pi_0}(X_t | Y_t, \dots, Y_1)
$$

Step 1: Truncated posterior

$$
\pi_{t,s}^{\mu} := \mathbb{P}_{X_s \sim \mu}(X_t | Y_t, \ldots, Y_{s+1})
$$

Step 2: OT representation

$$
\pi^{\mu}_{t,s} = T(\cdot, Y_t, \dots, Y_s) \# \mu \quad \text{where}
$$
\n
$$
T \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; P_{X_t, Y_t, \dots, Y_{s+1}})
$$

Step 3: Stationary assumption

 $P_{X_t, Y_t,...,Y_{s+1}} = P_{X_w, Y_w,...,Y_1}$ where $w := t - s$

Step 4: Use training data to approximate $P_{X_w, Y_w, ..., Y_1}$

Exact posterior:

$$
\pi_t := \mathbb{P}_{X_0 \sim \pi_0}(X_t | Y_t, \dots, Y_1)
$$

Step 1: Truncated posterior

$$
\pi_{t,s}^{\mu} := \mathbb{P}_{X_s \sim \mu}(X_t | Y_t, \ldots, Y_{s+1})
$$

Step 2: OT representation

$$
\pi_{t,s}^{\mu} = T(\cdot, Y_t, \dots, Y_s) \# \mu \quad \text{where}
$$
\n
$$
T \leftarrow \max_{f \in \mathcal{F}} \min_{T \in \mathcal{T}} J(f, T; P_{X_t, Y_t, \dots, Y_{s+1}})
$$

Step 3: Stationary assumption

$$
P_{X_t, Y_t, \ldots, Y_{s+1}} = P_{X_w, Y_w, \ldots, Y_1} \quad \text{where} \quad w := t - s
$$

Step 4: Use training data to approximate $P_{X_w,Y_w,...,Y_1}$

Error analysis

Assume

- The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$
- (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha}\epsilon(f, T)}
$$

Error analysis

Assume

\blacksquare The exact filter is exponentially stable

- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$
- (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha}\epsilon(f, T)}
$$

Error analysis

Assume

- \blacksquare The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary

 μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$

 (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha}\epsilon(f, T)}
$$
Error analysis

Assume

- \blacksquare The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$ t

 (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha}\epsilon(f, T)}
$$

Error analysis

Assume

- \blacksquare The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$ t
- (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f,T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha}\epsilon(f, T)}
$$

Error analysis

Assume

- \blacksquare The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$ t
- (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) .

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \leq C\lambda^w M + \sqrt{\frac{4}{\alpha}} \epsilon(f, T)
$$

Error analysis

Assume

- \blacksquare The exact filter is exponentially stable
- \blacksquare The process (X_t, Y_t) is stationary
- μ is equal to the stationary distribution of X_t and $M:=\sup d(\pi_t,\mu)<\infty$ t
- (f, T) is a possibly non-optimal pair with max-min gap $\epsilon(f, T)$

The function $x \mapsto \frac{1}{2}$ $\frac{1}{2}||x||^2 - f(x, y_w, \dots, y_1)$ is α -strongly convex for all (y_w, \dots, y_1) . Then,

$$
d(T(\cdot, Y_t, \dots, Y_{t-w}) \# \mu, \pi_t) \le C\lambda^w M + \sqrt{\frac{4}{\alpha} \epsilon(f, T)}
$$

Model:

$$
X_t = aX_{t-1} + \sigma V_t
$$

$$
Y_t = h(X_t) + \sigma W_t
$$

Model:

 $X_t = aX_{t-1} + \sigma V_t$ $Y_t = X_t + \sigma W_t$

Model:

 $X_t = aX_{t-1} + \sigma V_t$ $Y_t = X_t^2 + \sigma W_t$

Lorenz 63 model

$$
\dot{X} = f(X), \quad X_0 \sim \mathcal{N}(\mu_0, \sigma_0^2 I_3),
$$

\n
$$
Y_t = X_t(1) + W_t, \quad W_t \sim \mathcal{N}(0, \sigma^2), \quad \Delta t = 0.01
$$

Lorenz 63 model

$$
\dot{X} = f(X), X_0 \sim \mathcal{N}(\mu_0, \sigma_0^2 I_3),
$$

\n $Y_t = X_t(1) + W_t, W_t \sim \mathcal{N}(0, \sigma^2), \Delta t = 0.01$

Lorenz 63 model

$$
\dot{X} = f(X), \quad X_0 \sim \mathcal{N}(\mu_0, \sigma_0^2 I_3),
$$

\n
$$
Y_t = X_t(1) + W_t, \quad W_t \sim \mathcal{N}(0, \sigma^2), \quad \Delta t = 0.01
$$

Offline training time: 46.29 seconds

One-time step update:

