

A Coupled Oscillators-based Control Architecture for Locomotory Gaits

Presented at the Conference on Decision and Control Los Angeles, CA December 15-17, 2014

Amirhossein Taghvaei

Joint work with: S. A. Hutchinson, and P. G. Mehta

Dept. of Mechanical Science and Engineering and the Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Dec 16, 2014

Research supported by NSF grant EECS-0925534 and AFOSR grant FA9550-09-1-0190 CSL: COORDINATED SCIENCE LAB

- Problem overview
- 2 Literature survey
- Proposed approach
- Example with simulation result
- 5 Summary

Locomotion

Animal locomotion

Tadpole, San Diego zoo

Snake, BBC News

Usain Bolt, theconsultant.eu

Locomotion gait

Swimming gait, Journal of Experimental Biology

Snake locomotion, Biokids, Univ of Michigan

P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer. The dynamics of legged locomotion, 2006

Bio-Inspired Robots

RHex robot, Boston Dynamics

http://groups.csail.mit.edu/locomotion/

Snakelike Robot, Biorobotics CMU

Wind up toy robot

- D. Xinyan, L. Schenato, and S. S. Sastry, 2006
- Z. G. Zhang, N. Yamashita, M. Gondo, A. Yamamoto, and T. Higuchi, 2008
- R. L. Hatton and H. Choset, 2010

Bio-Inspired Robots

Periodic actuation of internal degree of freedom \rightarrow global displacement

RHex robot, Boston Dynamics

Snakelike Robot, Biorobotics CMU

http://groups.csail.mit.edu/locomotion/

Wind up toy robot

- D. Xinyan, L. Schenato, and S. S. Sastry, 2006
- Z. G. Zhang, N. Yamashita, M. Gondo, A. Yamamoto, and T. Higuchi, 2008
- R. L. Hatton and H. Choset, 2010

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$

Internal dynamics $\ddot{x} = F(x, \dot{x}, \tau)$ $I(x)\ddot{x} = C(x, \dot{x})\dot{x} - kx + \tau$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\psi} = A_1(x_1,x_2)\dot{x}_1 + A_2(x_1,x_2)\dot{x}_2$

Figure : 3-link system

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$

Internal dynamics $\ddot{x} = F(x, \dot{x}, \tau)$ $I(x)\ddot{x} = C(x, \dot{x})\dot{x} - kx + \tau$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\psi} = A_1(x_1,x_2)\dot{x}_1 + A_2(x_1,x_2)\dot{x}_2$

Figure : 3-link system

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$

Internal dynamics $\ddot{x} = F(x, \dot{x}, \tau)$ $I(x)\ddot{x} = C(x, \dot{x})\dot{x} - kx + \tau$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\psi} = A_1(x_1, x_2)\dot{x}_1 + A_2(x_1, x_2)\dot{x}_2$

Figure : 3-link system

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$

Internal dynamics $\ddot{x} = F(x, \dot{x}, \tau)$ $I(x)\ddot{x} = C(x, \dot{x})\dot{x} - kx + \tau$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\psi} = A_1(x_1,x_2)\dot{x}_1 + A_2(x_1,x_2)\dot{x}_2$

Figure : 3-link system

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$

Internal dynamics $\ddot{x} = F(x, \dot{x}, \tau)$ $I(x)\ddot{x} = C(x, \dot{x})\dot{x} - kx + \tau$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\Psi} = A_1(x_1, x_2)\dot{x}_1 + A_2(x_1, x_2)\dot{x}_2$

Figure : 3-link system

Shape variable $x \in M$ $x = (x_1, x_2) \in T^2$ Group variable $g \in G$ $g = (\vec{r}, \psi) \in SE(2)$

Internal dynamics
$$\begin{split} \ddot{x} &= F(x, \dot{x}, \tau) \\ I(x) \ddot{x} &= C(x, \dot{x}) \dot{x} - kx + \tau \end{split}$$

Group dynamics $g^{-1}\dot{g} = A(x)\dot{x}$ $\dot{\Psi} = A_1(x_1, x_2)\dot{x}_1 + A_2(x_1, x_2)\dot{x}_2$

The dynamics does not dependen on the group variable

Figure : 3-link system

S. D. Kally and P. M. Murray, Cosmotric Phase and Palastic Lecomotion, 1004

Control of Locomtory Gaits

General Approach

- Gait design: Choose a periodic orbit in the shape space to induce the desired change in group variable.
- Gait generation: Implement a law for the control input, that leads to the desired periodic orbit in the shape space.

- R. W .Brockett. Pattern generation and the control of nonlinear systems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994
- Juan B Melli, Clarence W Rowley, and Dzhelil S Rufat. Motion planning for an articulated body in a perfect planar fluid, 2006
- R. M. Murray, and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids. 1993.
- J. Blair, and T. Iwasaki, Optimal gaits for mechanical rectifier systems. 2011.
- R. L. Hatton and H. Choset, Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction. 2010.

General Approach

- **Gait design:** Choose a periodic orbit in the shape space to induce the desired change in group variable.
- Gait generation: Implement a law for the control input, that leads to the desired periodic orbit in the shape space.

- R. W .Brockett. Pattern generation and the control of nonlinear systems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994
- Juan B Melli, Clarence W Rowley, and Dzhelil S Rufat. Motion planning for an articulated body in a perfect planar fluid, 2006
- R. M. Murray, and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids. 1993.
- J. Blair, and T. Iwasaki, Optimal gaits for mechanical rectifier systems. 2011.
- R. L. Hatton and H. Choset, Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction. 2010.

General Approach

$$\begin{array}{c|c} \text{Control} & \text{Shape} \\ \text{input} & \text{dynamics} \\ \tau(t) & \ddot{x} = f(x, \dot{x}, \tau) \\ \end{array} \begin{array}{c} \text{Group} & g \\ \text{dynamics} \\ \dot{g} = gA(x)\dot{x} \end{array}$$

- **Gait design:** Choose a periodic orbit in the shape space to induce the desired change in group variable.
- **Gait generation:** Implement a law for the control input, that leads to the desired periodic orbit in the shape space.

- R. W .Brockett. Pattern generation and the control of nonlinear systems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994
- Juan B Melli, Clarence W Rowley, and Dzhelil S Rufat. Motion planning for an articulated body in a perfect planar fluid, 2006
- R. M. Murray, and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids. 1993.
- J. Blair, and T. Iwasaki, Optimal gaits for mechanical rectifier systems. 2011.
- R. L. Hatton and H. Choset, Generating gaits for snake robots: Annealed chain fitting and keyframe wave extraction. 2010.

- Periodic input, to have shape variable oscillate in periodic manner.
- Noisy sensory measurements of the shape variables.
- **B** Control actuation via manipulation of parameters of the system.
- Find optimal control law, to achieve maneuver about nominal gait, based on noisy sensory measurements

Approach

I Periodic input, to have shape variable oscillate in periodic manner.

- Noisy sensory measurements of the shape variables.
- **B** Control actuation via manipulation of parameters of the system.
- Find optimal control law, to achieve maneuver about nominal gait, based on noisy sensory measurements

- Periodic input, to have shape variable oscillate in periodic manner.
- 2 Noisy sensory measurements of the shape variables.
- **B** Control actuation via manipulation of parameters of the system.
- Find optimal control law, to achieve maneuver about nominal gait, based on noisy sensory measurements

- Periodic input, to have shape variable oscillate in periodic manner.
- 2 Noisy sensory measurements of the shape variables.
- **3** Control actuation via manipulation of parameters of the system.
- Find optimal control law, to achieve maneuver about nominal gait, based on noisy sensory measurements

- **I** Periodic input, to have shape variable oscillate in periodic manner.
- Noisy sensory measurements of the shape variables.
- Control actuation via manipulation of parameters of the system.
- Find optimal control law, to achieve maneuver about nominal gait, based on noisy sensory measurements

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x}) \\ \dot{\psi} &= \tilde{A}(x)\dot{x} \end{split}$$

Shape variable: x

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})\\ \dot{\psi} &= \tilde{A}(x)\dot{x} \end{split}$$

Periodic control input:

 $\tau(t) = \tau_0 \sin(\omega_0 t)$

Shape variable: x

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau_0\sin(\omega_0 t) - \kappa x - b\dot{x})\\ \dot{\psi} &= \tilde{A}(x)\dot{x} \end{split}$$

Periodic control input:

 $\tau(t) = \tau_0 \sin(\omega_0 t)$

Shape variable: x

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0 \sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x)\dot{x}$$

Periodic control input:

$$\tau(t) = \tau_0 \sin(\omega_0 t)$$

Measurement:

$$dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$$

 $W(t)$: Wiener process

Shape variable: xGroup variable: ψ

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0 \sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x)\dot{x}$$

Measurement:

 $\mathrm{d}Z_t = \tilde{h}(x,\dot{x})\,\mathrm{d}t + \mathrm{d}W_t$ W(t): Wiener process

Control actuation:

$$d(t) = \bar{d}(1+u) \quad \rightarrow \quad \dot{\psi} = A(x,u)\dot{x}$$

Shape variable: xGroup variable: ψ

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0\sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x, u)\dot{x}$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

- Geometric phase
- Control cost
- Small control penalty parameter

Head Tail

Shape variable: x

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau_0\sin(\omega_0 t) - \kappa x - b\dot{x}) \\ \dot{\psi} &= \tilde{A}(x,u)\dot{x} \end{split}$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

- Geometric phase
- Control cost
- Small control penalty parameter

Head Tail

Shape variable: x

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0\sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x, u)\dot{x}$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

Geometric phase

Control cost

Small control penalty parameter

Head Tail

Shape variable: x

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0 \sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x, u)\dot{x}$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

Geometric phase

Control cost

Small control penalty parameter

Head Tail

Shape variable: x

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau_0\sin(\omega_0 t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = \tilde{A}(x, u)\dot{x}$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

- Geometric phase
- Control cost
- Small control penalty parameter

Head Tail

Shape variable: x

Numerical Result, Open Loop

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})$$
$$\dot{\psi} = \tilde{A}(x, u)\dot{x}$$

Periodic control input:

 $\tau(t) = \tau_0 \sin(\omega_0 t)$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Limit cycle solution:

 $X_{LC}(\theta(t)) = (x(t), \dot{x}(t))$ $\theta(t) = (\omega_0 t + \theta_0) \mod 2\pi$

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})\\ \dot{\psi} &= \tilde{A}(x,u)\dot{x} \end{split}$$

Periodic control input:

 $\tau(t) = \tau_0 \sin(\omega_0 t)$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Limit cycle solution:

 $X_{LC}(\theta(t)) = (x(t), \dot{x}(t))$ $\theta(t) = (\omega_0 t + \theta_0) \mod 2\pi$

 $\theta = \frac{3\pi}{2}$

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})\\ \dot{\psi} &= \tilde{A}(x,u)\dot{x} \end{split}$$

Periodic control input:

$$\tau(t) = \tau_0 \sin(\omega_0 t)$$

Measurement:

 $dZ_t = \tilde{h}(x, \dot{x}) dt + dW_t$ W(t): Wiener process

Limit cycle solution:

 $\begin{aligned} X_{LC}(\theta(t)) &= (x(t), \dot{x}(t)) \\ \theta(t) &= (\omega_0 t + \theta_0) \mod 2\pi \end{aligned}$

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})\\ \dot{\psi} &= \tilde{A}(x,u)\dot{x} \end{split}$$

Periodic control input:

$$\tau(t) = \tau_0 \sin(\omega_0 t)$$

Measurement:

 $dZ_t = \tilde{h}(\mathbf{x}, \dot{\mathbf{x}}) dt + dW_t$ W(t): Wiener process

Limit cycle solution:

 $\begin{aligned} X_{LC}(\theta(t)) &= (x(t), \dot{x}(t)) \\ \theta(t) &= (\omega_0 t + \theta_0) \mod 2\pi \end{aligned}$

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})\\ \psi &= \tilde{A}(x,u)\dot{x} = A(\theta,u) \end{split}$$

Periodic control input:

$$\tau(t) = \tau_0 \sin(\omega_0 t)$$

Measurement:

 $dZ_t = h(\theta) dt + dW_t$ W(t): Wiener process

Limit cycle solution:

 $X_{LC}(\theta(t)) = (x(t), \dot{x}(t))$ $\theta(t) = (\omega_0 t + \theta_0) \mod 2\pi$

 $\theta = \frac{3\pi}{2}$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^{2} + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u) \Rightarrow \quad \psi(T) - \psi(0) = \int_{0}^{T} A(\theta(t), u(t)) dt$$

Measurement:

$$dZ_t = h(\theta) dt + dW_t$$

 $W(t)$: Wiener process

$$\min_{\boldsymbol{u}_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_0^T \boldsymbol{u}(t)^2 \mathrm{d}t\Big]$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^{2} + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u) \Rightarrow \quad \psi(T) - \psi(0) = \int_{0}^{T} A(\theta(t), u(t)) dt$$

Measurement:

$$dZ_t = h(\theta) dt + dW_t$$

 $W(t)$: Wiener process

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big]$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^{2} + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u) \Rightarrow \quad \psi(T) - \psi(0) = \int_{0}^{T} A(\theta(t), u(t)) dt$$

Measurement:

$$dZ_t = h(\theta) dt + dW_t$$

 $W(t)$: Wiener process

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big] = \\\min_{u_{[0,T]}} \mathsf{E}\Big[\int_0^T \left(A(\boldsymbol{\theta}(t), u(t)) + \frac{1}{2\varepsilon} u(t)^2\right) \mathrm{d}t\Big]$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u) \Rightarrow \quad \psi(T) - \psi(0) = \int_0^T A(\theta(t), u(t)) \, \mathrm{d}t$$

Measurement:

$$dZ_t = h(\theta) dt + dW_t$$

 $W(t)$: Wiener process

$$\begin{split} \min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_{0}^{T} u(t)^{2} \mathrm{d}t\Big] \\ \min_{u_{[0,T]}} \mathsf{E}\Big[\int_{0}^{T} \left(A(\theta(t), u(t)) + \frac{1}{2\varepsilon} u(t)^{2}\right) \mathrm{d}t\Big] \Rightarrow \\ u^{*}(t) &= -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial u}(\theta(t), u^{*}(t)) \mid \mathscr{Z}_{t}\Big] \end{split}$$

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x}) \\ \dot{\psi} &= A(\theta, u) \Rightarrow \ \psi(T) - \psi(0) = \int_0^T A(\theta(t), u(t)) \, \mathrm{d}t \end{split}$$

Measurement:

 $dZ_t = h(\theta) dt + dW_t$ W(t): Wiener process

Objective: Turning the head,

$$\begin{split} \min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_{0}^{T} u(t)^{2} \mathrm{d}t\Big] \\ \min_{u_{[0,T]}} \mathsf{E}\Big[\int_{0}^{T} \left(A(\theta(t), u(t)) + \frac{1}{2\varepsilon} u(t)^{2}\right) \mathrm{d}t\Big] \Rightarrow \\ u^{*}(t) &= -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial u}(\theta(t), u^{*}(t)) \mid \mathscr{Z}_{t}\Big] \end{split}$$

Construct filter to evaluate the average

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

- Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).
- Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

- Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).
- Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

FPF:
$$\mathrm{d}\theta_t^i = \omega^i \mathrm{d}t + \mathrm{d}B^i(t) + \mathsf{K}(\theta^i, t) \circ \left(\mathrm{d}Z_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}_t)\mathrm{d}t\right)$$

 $i = 1, \ldots N, \mod 2\pi$

Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).

Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

FPF:
$$d\theta_t^i = \omega^i dt + dB^i(t) + K(\theta^i, t) \circ (dZ_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}_t) dt)$$

 $i = 1, ...N, \mod 2\pi$

- Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).
- Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

FPF:
$$d\theta_t^i = \omega^i dt + dB^i(t) + K(\theta^i, t) \circ (dZ_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}_t) dt)$$

 $i = 1, ...N, \mod 2\pi$
 i^{th} oscillator's noise

- Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).
- Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

FPF:
$$d\theta_t^i = \omega^i dt + dB^i(t) + K(\theta^i, t) \circ (dZ_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}_t) dt)$$

 $i = 1, ...N, \mod 2\pi$

Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).

Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Signal: $d\theta_t = \omega_0 dt + dB_t$, mod 2π

Observations: $dZ_t = h(\theta_t) dt + dW_t$

Problem: Estimate the phase θ_t from noisy observations.

FPF:
$$\mathrm{d}\theta_t^i = \omega^i \mathrm{d}t + \mathrm{d}B^i(t) + \mathsf{K}(\theta^i, t) \circ (\mathrm{d}Z_t - \frac{1}{2}(h(\theta_t^i) + \hat{h}_t) \mathrm{d}t)$$

 $i = 1, \ldots N, \mod 2\pi$

Yang, Mehta, Meyn. Feedback Particle Filter. IEEE Trans. Automatic Control (Oct 2013).

Laugesen, Mehta, Meyn, Raginsky. Poisson's Equation in Nonlinear Filtering. SIAM J. Opt. Control (2014).

Dynamics:

$$\begin{split} M(x)\ddot{x} &= C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x}) \\ \dot{\psi} &= A(\theta, u) \end{split}$$

Measurement:

$$dZ_t = h(\theta) dt + dW_t$$

 $W(t)$: Wiener process

$$\min_{u_{[0,T]}} \mathsf{E}\Big[(\psi(T) - \psi(0)) + \frac{1}{2\varepsilon} \int_0^T u(t)^2 \mathrm{d}t\Big] \Rightarrow$$
$$u^*(t) = -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial u}(\theta(t), u^*(t)) \mid \mathscr{Z}_t\Big]$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u)$$

Measurement:

 $dZ_t = h(\theta) dt + dW_t$ W(t): Wiener process

$$\begin{split} & \min_{\boldsymbol{u}_{[0,T]}} \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_{0}^{T} \boldsymbol{u}(t)^{2} \mathrm{d}t\Big] \Rightarrow \\ & \boldsymbol{u}^{*}(t) = -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial \boldsymbol{u}}(\boldsymbol{\theta}(t), \boldsymbol{u}^{*}(t)) \mid \mathscr{Z}_{t}\Big] \approx \\ & -\varepsilon \frac{1}{N} \sum_{i=1}^{N} \frac{\partial A}{\partial \boldsymbol{u}}(\boldsymbol{\theta}^{i}(t), \boldsymbol{u}^{*}(t)) \end{split}$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u)$$

Measurement:

 $dZ_t = h(\theta) dt + dW_t$ W(t): Wiener process

$$\begin{split} \min_{u_{[0,T]}} & \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_{0}^{T} u(t)^{2} \mathrm{d}t\Big] \Rightarrow \\ u^{*}(t) &= -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial u}(\boldsymbol{\theta}(t), u^{*}(t)) \mid \mathscr{Z}_{t}\Big] \approx \\ &-\varepsilon \frac{1}{N} \sum_{i=1}^{N} \frac{\partial A}{\partial u}(\boldsymbol{\theta}^{i}(t), u^{*}(t)) = -\varepsilon \frac{1}{N} \sum_{i=1}^{N} \frac{\partial A}{\partial u}(\boldsymbol{\theta}^{i}(t), 0) + O(\varepsilon^{2}) \end{split}$$

Dynamics:

$$M(x)\ddot{x} = C(x)\dot{x}^2 + B(x)(\tau(t) - \kappa x - b\dot{x})$$

$$\dot{\psi} = A(\theta, u)$$

Measurement:

 $dZ_t = h(\theta) dt + dW_t$ W(t): Wiener process

$$\begin{split} \min_{\boldsymbol{u}_{[0,T]}} & \mathsf{E}\Big[(\boldsymbol{\psi}(T) - \boldsymbol{\psi}(0)) + \frac{1}{2\varepsilon} \int_{0}^{T} \boldsymbol{u}(t)^{2} \mathrm{d}t\Big] \Rightarrow & \mathsf{Head} \\ u^{*}(t) &= -\varepsilon \mathsf{E}\Big[\frac{\partial A}{\partial \boldsymbol{u}}(\boldsymbol{\theta}(t), \boldsymbol{u}^{*}(t)) \mid \mathscr{Z}_{t}\Big] \approx \\ & -\varepsilon \frac{1}{N} \sum_{i=1}^{N} \frac{\partial A}{\partial \boldsymbol{u}}(\boldsymbol{\theta}^{i}(t), \boldsymbol{u}^{*}(t)) = -\varepsilon \frac{1}{N} \sum_{i=1}^{N} \frac{\partial A}{\partial \boldsymbol{u}}(\boldsymbol{\theta}^{i}(t), 0) + O(\varepsilon^{2}) \approx -\varepsilon \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\phi}(\boldsymbol{\theta}^{i}) \end{split}$$

2-body system, Simulation Result

[Click to play the movie]

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

Periodic input

- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

- Periodic input
- Noisy sensory measurements of the shape
- Coupled oscillator Feedback Particle Filter to estimate the shape
- Optimal control law based on oscillators
- Maneuver around a nominal gait

Thank You

Questions?

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

Geometric Phase: Net change in group variable over one cycle

- R. W .Brockett. Patterngenerationandthecontrolofnonlinearsystems. 2004
- P. S. Krishnaprasad. Geometric phases, and optimal reconfiguration for multibody systems, 1994

Numerical Result, Estimation

Numerical Result, Close loop

