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Research overview

 

Machine learning Mean-field control

Deep learning
Bayesian inference
Generative models
Sampling from dist.

Optimal control 
for probability dist.

[Bensoussan, Frehse, Yam] 
[Carmona and Delarue]

Many machine learning problems can be 
formulated as an optimization problem on the 
space of probability distributions

Mean-field control can be used to design 
algorithms realized as a system of controlled 
interacting particles to solve ML problems

My research 
interest

[Huang, Caines, Malhame]

I A. Taghvaei, P. G. Mehta. Accelerated gradient flow for probability distributions (under
review, ICLR’19)

I A. Taghvaei, J. Kim, P. G. Mehta. How regularization affects the critical points in linear
neural networks (NIPS’17)

I A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern
extensions for the continuous-time nonlinear filtering problem. ASME, Nov, 2017

I C. Zhang, A. Taghvaei, P. G. Mehta. A mean-field optimal control formulation for global
optimization, (TAC), May, 2018

Nonlinear filtering and feedback particle filter

Filtering problem:
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Feedback Particle Filter:

dX i
t = ut(X 1

t , . . . ,X
N
t )︸ ︷︷ ︸

control law

dt + Kt(X 1
t , . . . ,X

N
t )︸ ︷︷ ︸

control law

dZt, for i = 1, . . . ,N

Choose the control law such that the empirical distribution of the particles approximates
the posterior distribution

1
N

N∑
i=1

δX i
t
≈ P(Xt|Zt)

Questions:
1. How to design the control law?
2. How to compute the control law?
3. What is the total error of the algorithm?

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle
filter, Automatica, 2015

(2) Gain function approximation

Control law from [T. Yang, et. al.] :

dX̄t = (dynamics) + Kt(X̄t) dĪt︸ ︷︷ ︸
correction update

Gain function Kt(x) = ∇φ(x) where φ solves the Poisson eq.

Poisson equation:

− 1
ρ(x)∇ · (ρ(x)∇φ(x)) = h(x)

• ρ is a prob. density
• h is a given function,

Given: {X 1, . . . ,X N} i.i.d∼ ρ

Find: {∇φ(X 1), . . . ,∇φ(X N)}

Constant gain function approximation and relation to ensemble the Kalman filter

Constant gain approximation:

Kconst. =

∫
(h(x)− ĥ)ρ(x) dx ≈ 1

N

N∑
i=1

(h(X i)− ĥ(N))X i

FPF
const. gain
−−−−−−−−−→ EnKf

I EnKf is widely used in geophysical applications where the state dimension is large as
an alternative to the Kalman filter [Evensen, 1994]

I EnKf is not exact for nonlinear and non Gaussian systems
I FPF is the generalization of the EnKf for non-linear and non-Gaussian systems

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern
extensions for the continuous-time nonlinear filtering problem. ASME, 2017

Diffusion map approximation of the gain

I Stochastic formulation:

φ = Pεφ +

∫ ε

0
Ps(h − ĥ) ds

where {Pt} is the semigroup for ∆ρ := 1
ρ∇ · (ρ∇)

I Approximate P with a Markov matrix using particles [Coifman (2006)]
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Error analysis:

Total error ≤ O(ε)︸︷︷︸
Bias

+ O(
1

ε1+d/2
√

N
)︸ ︷︷ ︸

Variance

A. Taghvaei, P. G. Mehta, Gain function approximation in the feedback particle filter,
CDC, 2016
A. Taghvaei, P. G. Mehta. S. P. Meyn, Error Estimates for the Kernel Gain Function
Approximation in the Feedback Particle Filter, ACC, 2017

(3) Error analysis of the linear FPF

Question: Convergence of the empirical distribution to the mean-field distribution.
Upper-bound for mean squared error in estimation

Assumption: Linear Gaussian model

Theoretical upper-bound

A. Taghvaei, P. G. Mehta, Error analysis of the linear FPF, (ACC), 2018
A. Taghvaei, P. G. Mehta, Error analysis of the stochastic linear FPF, (CDC), 2018

(1) Optimal transport formulation of FPF

Question: How to design the control law in the FPF
Idea: View filtering as a transportation problem from prior distribution to the posterior
distribution. Form a unique control law from optimal transport maps

A. Taghvaei, P. G. Mehta. An Optimal Transport Formulation of Linear Feedback
Particle Filter, (ACC), 2016

Other approaches: Duality, Entropy minimization, Schrödinger bridge

Summary

(1) Design: Formulate the problem in the space of probability distributions using the
mean-field approach. Use variational principles to model the objective. Use optimal
transportation theory and mean-field optimal control to obtain the mean-field control law
(2) Approximation: Compute the mean-field control law in terms of finite number of
particles. Use tools from stochastic approximation and statistical learning to design and
analyze algorithms
(3) Error analysis: Study the total error of the algorithm and the convergence of the
finite-N system to the mean-field limit.

Mean-field sys. Finite-N sys.
Approximation

Convergence

Internship experiences

1) AI researcher , with Dr. Amin Jalali, Technicolor AI research lab, Palo Alto, Summer,
2018
Project: Restricted Convex Potentials for Approximating the Wasserstein Metric and
the Optimal Transport Mapping
2) Algorithm Developer , with university start-up, Rithmio, 2014-2015
Project: Development of learning algorithms for real time classification of physical
activities, based on wearable inertial sensors

Other activities

I Organizer of the CSL student conference, UIUC, 2015, 2016, 2018
I Mentorship of five undergraduate students
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