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Outline

Filtering problem in linear Gaussian setting

Kalman filter (1960s)

Kalman filter is exact, but it is computationally expensive for high dim. problems

Ensemble Kalman filter (1990s) linear Feedback Particle Filter (2010s)

They are computationally efficient, but have approximation errors

Error analysis of the FPF and EnKF (2017-18)

If the system is stable and fully observable, then uniform error bounds are guaranteed
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Filtering problem: Linear Gaussian setting

Model:

State process: dXt = AXt dt+ σB dBt, (linear dynamics)

Observation process: dZt = HXt dt+ dWt, (linear observation)

Prior distribution: X0 ∼ N (m0,Σ0), (Gaussian prior)

Problem: Find conditional probability distribution of Xt given history of observation
Zt := {Zs; s ∈ [0, t]}

P(Xt|Zt) = ?

J. Xiong, An introduction to stochastic filtering theory, 2008
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Kalman-Bucy filter

Kalman-Bucy filter: P (Xt|Zt) is Gaussian N (mt,Σt)

Update for mean: dmt = (linear dynamics) + Kt dIt︸ ︷︷ ︸
correction

Update for covariance:
dΣt
dt

= Ric(Σt) (Ricatti equation)

Kalman gain: Kt := ΣtH
>

Innovation process: dIt := dZt −Hmt dt

Computational remark:

if state dimension is d ⇒ covariance matrix is d× d

⇒ computational complexity is O(d2)

⇒ Not scalable for high-dim problems

(e.g weather prediction)

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961
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Stochastic linear FPF and ensemble Kalman filter

Idea: Propagate particles {Xi
t}Ni=1 ∼ P(Xt|Zt) instead of mean and covariance

dXi
t = (linear dynamics) + K

(N)
t ( dIt −

1

2
H(Xi

t −m
(N)
t ) dt)︸ ︷︷ ︸

correction

, Xi
0

i.i.d∼ p0

where

empirical mean: m
(N)
t :=

1

N

N∑
i=1

Xi
t

empirical covariance: Σ
(N)
t :=

1

N − 1

N∑
i=1

(Xi
t −m

(N)
t )(Xi

t −m
(N)
t )>

empirical Kalman gain: K
(N)
t := Σ

(N)
t H>

Exactness: If N =∞ (mean-field limit), then m
(N)
t = mt and Σ

(N)
t = Σt

Computational remark: computational complexity is O(Nd). Efficient when d >> N

Question: What is the approximation error when N <∞?

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model . . . 1994.
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012
T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016
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Literature review
Background on ensemble Kalman filter and FPF

EnKf: [G. Evensen, 1994]

Widely applied in geophysical sciences

Exact only for linear Gaussian setting

Two established forms of EnKF:
(i) EnKF based on perturbed observation
(ii) The square root EnKF

FPF: [T. Yang, et. al. 2012]

Alternative to particle filter

Does not suffer from particle degeneracy and admits lower simulation variance

Exact for nonlinear non-Gaussian setting

Generalization of the EnKF to non-linear setting

Two forms of linear FPF:
(i) Stochastic linear FPF (same as square-root EnKf)
(ii) Deterministic linear FPF

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-
time nonlinear filtering problem. ASME, 2017
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Literature review
Error analysis of the FPF and EnKF

1) EnKf with perturbed observation

Assumption: System is stable and fully observable (H>H = ρI)

Convergence with O(
1√
N

) on finite time horizon: [Le Gland et. al. 2009]

Convergence with O(
1√
N

) uniform in time [Del moral, et. al. 2016]

2) Deterministic FPF

Assumption: System is stabilizable and detectable

Convergence with O(
e−λt√
N

) [Taghvaei and Mehta .(ACC) 2018]

3) Stochastic linear FPF or square root EnKF

Error analysis: Subject of this work
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Stochastic linear FPF
Problem formulation

Finite-N system:

dXi
t = (linear dynamics) + K

(N)
t ( dIt −

1

2
H(Xi

t −m
(N)
t ) dt), Xi

0
i.i.d∼ p0

K
(N)
t = Σ

(N)
t H>

with empirical mean m
(N)
t and covariance Σ

(N)
t

Mean-field limit:

dX̄t = (linear dynamics) + K̄t( dĪt −
1

2
H(Xi

t − m̄t) dt), X̄0 ∼ p0

K̄t = Σ̄tH
>

with mean-field mean m̄t = E[X̄t|Zt] and covariance Σ̄t = Cov(X̄t|Zt)

Error analysis:

1 Analysis of the mean-field system

2 Analysis of the converegnce of the finite-N system to the mean-field limit

Finite-N system
(2)
≈ mean-field system

(1)
= Kalman filter
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Evolution of the mean and covariance

Finite-N system:

dm
(N)
t = (linear dynamics) + K

(N)
t dIt︸ ︷︷ ︸

Kalman filter

+
σB√
N

dB̃t︸ ︷︷ ︸
stochastic term

dΣ
(N)
t = Ric(Σ

(N)
t ) dt︸ ︷︷ ︸

Kalman filter

+
dMt√
N︸ ︷︷ ︸

stochastic term

Mean-field system system (N =∞):

dm̄t = (linear dynamics) + K̄t dIt︸ ︷︷ ︸
Kalman filter

d

dt
Σ̄t = Ric(Σ

(N)
t )︸ ︷︷ ︸

Kalman filter
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Linear FPF is exact

Proposition

Consider the linear Gaussian filtering problem (Xt, Zt), and the mean-field system X̄t.

1 If m̄0 = m0 and Σ̄0 = Σ0, then

m̄t = mt, Σ̄t = Σt

2 If the initial distribution is Gaussian X̄0 ∼ N (m0,Σ0),

X̄t ∼ P(Xt|Zt)

Error Analysis of the Linear FPF Amirhossein Taghvaei 9 / 14 Amirhossein Taghvaei



Existence and uniqueness of the mean-field process

Mean-field system:

dX̄t = (linear dynamics) + K̄t( dĪt −
1

2
H(Xi

t − m̄t) dt), X̄0 ∼ p0

K̄t = Σ̄tH
>

It is a McKean-Vlasov sde

Fixed-point type technique is used to show existence of a unique mean-field process

Proposition (Existence and uniqueness)

The McKean-Vlasov sde has a unqiue strong solution on the space C([0, T ],Rd) such
that E[sup

t
|X̄t|2] <∞]
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Stability of the mean-field process

Define ξ̄t = X̄t − m̄t, then

dm̄t = (Kalman filter)

dξ̄t = (A− 1

2
K̄tH)ξ̄t + σB dB̄t

Assumptions:

The system (A,H) is detectable and (A, σB) is stabilizable (for stability of m̄t)

The covariance matrix ΣB = σBσ
>
B � 0 (for stability of ξ̄)

Proposition

Let X̄t ∼ πt and X̃t ∼ π̃t be solutions to the mean-field system with different initial
condition. Then

W2(πt, π̃t) ≤Me−βt
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Convergence of the mean and covariance

Evolution of mean and covariance:

dm
(N)
t = (linear dynamics) + K

(N)
t dIt︸ ︷︷ ︸

Kalman filter

+
σB√
N

dB̃t︸ ︷︷ ︸
stochastic term

dΣ
(N)
t = Ric(Σ

(N)
t ) dt︸ ︷︷ ︸

Kalman filter

+
dMt√
N︸ ︷︷ ︸

stochastic term

Proposition (convergence)

Assume d = 1 (scalar case). Then

E[|Σ(N)
t − Σt|2p]1/p ≤ (const.)

e−βt

N
+

(const.)

N

Assume the matrix A is stable. Then

E[|m(N)
t −mt|2] ≤ (const.)

e−2µ(A)t

N
+

(const.)

N
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Convergence of the empirical distribution
Propagation of chaos

Proposition

Consider the stochastic linear FPF for the linear Gaussian problem where the system is
stable. Then

E[
∣∣ 1

N

N∑
i=1

f(Xi
t)− E[f(Xt)|Zt]

∣∣2] ≤ (const)

N
, ∀f ∈ Cb(Rd)

The empirical distribution converges to the posterior disttribution

A. Sznitman. Topics in propagation of chaos, 1991
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Conclusions and future work

We proved the convergence and provided error-bounds for a stable and scalar system

Recent work [Bishop and Del Moral, 2018] proved error-bounds under the
assumption that the system is fully observable (H is full-rank)

Is it possible to do the error analysis under stabilizable and detectable assumption?
open problem

The are many finite-N system that have the same mean-field limt. Should we
change the finie-N system? Can dual formulation be helpful?

Thank you for your attention!
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