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Stochastic thermodynamics
Background

What is stochastic thermodynamics?

study thermodynamics at the level of individual particle and far from equilibrium

a branch of non-equilibrium statistical physics (developed over the last few decades)

Applications:

biological molecular machines (e.g. kinesin and myosin)

artificial nano devices (energy of order kBT )

Questions:

minimum dissipation over finite time transitions

maximum power from a stochastic thermodynamic engine

how to extract power from noisy measurements (this work)

Tools from control can be used to formulate and study these questions

L. Peliti & S. Pigolotti, Stochastic Thermodynamics: An Introduction. Princeton University Press, 2021.
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Stochastic thermodynamics
Model

Overdamped Langevin eq.

γdXt = −∇xU(t,Xt)dt+
√

2DdBt

a particle in a medium of temperature T

manipulated by external potential U(t, x)

γ is the viscosity coefficient

D = γkBT is the diffusion constant

Potential U(t, x) is controlled to achieve certain objectives, e.g. extract work
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Stochastic thermodynamic
Definitions of work and heat for individual particle

Energy:

E = U0(X0)

Work: energy exchange by changing the potential (with external agent)

W = U1(X0)− U0(X0)

Heat: energy exchange when particle moves (with medium)

Q = U1(X1)− U1(X0)

1st law: conservation of energy

∆E = Q+W

K. Sekimoto, Stochastic energetics. Springer, 2010.
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Stochastic thermodynamic
Definitions of work and heat in continuous-time

Consider continuous-time trajectory {Xt; t ∈ [0, tf ]} and {U(t, ·); t ∈ [0, tf ]}

change in energy

dEt = dU(t,Xt) =
∂U

∂t
(t,Xt)dt+∇xU(t,Xt) ◦ dXt

Work

W =

∫ tf

0

∂U

∂t
(t,Xt)dt

heat

Q =

∫ tf

0

∇xU(t,Xt) ◦ dXt

1st law

∆E = W +Q
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Stochastic thermodynamic
Definitions of work and heat for ensemble

Average energy

Et = E[U(t,Xt)] =

∫
U(t, x)p(t, x)dx

Average work

W =

∫ tf

0

E[
∂U

∂t
(t,Xt)]dt =

∫ tf

0

∫
∂U

∂t
(t, x)p(t, x)dxdt

Average heat

Q =

∫ tf

0

E[∇xU(t,Xt) ◦ dXt] =

∫ tf

0

∫
U(t, x)

∂p

∂t
(t, x)dxdt

p(t, x) is probability dist. of Xt given by Fokker-Planck eq.

∂p

∂t
=

1

γ
∇ · (p∇U) +

kBT

γ
∆p
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Stochastic thermodynamic
2nd law of thermodynamics

Entropy:

S(p) = −
∫

log(p(x))p(x)dx

Free energy:

F(p, U) =

∫
U(x)p(x)dx− kBTS(p)

Second law:

∆Stot = ∆Ssys + ∆Senv ≥ 0 ⇐⇒ W −∆F =Wdiss ≥ 0

Question: how to prove and refine 2nd law for overdamped Langevin eq.?

Amirhossein Taghvaei 6 / 16 Amirhossein Taghvaei



Background on Wasserstein geometry

Consider the curve {p(t, x); t ∈ [0, 1]} in the space of probability distributions

A unique vector-field ∇φ(t, x) is associated with the curve such that

∂p

∂t
+∇ · (p∇φ) = 0

The Wasserstein Riemannian metric at each point

‖∂p
∂t
‖2W :=

∫
‖∇φ‖2pdx

The length of the curve is

lengthW(p[0,1]) :=

∫ 1

0

‖∂p
∂t
‖Wdt

The length of the geodesic connecting p0 and p1 is the 2-Wasserstein distance

W2(p0, p1) := min{lengthW(p[0,1]); with fixed end-points}
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2nd law and Wasserstein geometry
Entropy production rate

Free energy is also relative entropy with respect to equilibrium peq =
1

Z
e
− 1

kBT
U

F(p, U) = kBTD(p‖peq) + kBT log(Z)

If U is constant, the time-derivative of free energy along Fokker-Planck flow is

d

dt
F(p, U) = −γ‖∂p

∂t
‖2W

When U is time-varying,

d

dt
F(p, U) =

∫
∂U

∂t
p dx− γ‖∂p

∂t
‖2W
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2nd law and Wasserstein geometry

2nd law with no measurements

For the over-damped Langevin eq., we have the identity

W −∆F = γ

∫ tf

0

‖∂p
∂t
‖2Wdt

and the bound
W −∆F ≥ γ

tf
lengthW(p[0,tf ]) ≥

γ

tf
W2

2(p0, pf )

This is refinement of the second law for finite-time non-equilibrium transitions

The bound is achieved when moving with constant velocity along the geodesic

RHS converges to zero as transition time tf →∞ (quasi-static limit)

E. Aurell, C. Mej́ıa-Monasterio, and P. Muratore-Ginanneschi, Optimal protocols and optimal transport in stochastic thermodynamics, Phys. Rev. Lett, 2011
Y. Chen, T. Georgiou, and A. Tannenbaum, ”Stochastic control and non-equilibrium thermodynamics: fundamental limits,” IEEE TAC, 2019.
R. Fu, A. Taghvaei, Y. Chen, and T. T. Georgiou, ”Maximal power output of a stochastic thermodynamic engine”, Automatica, 2021.
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Stochastic thermodynamic
With noisy measurements

Model:

γdXt = −∇U(t,Xt)dt+
√

2DdBt

dZt = h(Xt)dt+ σvdVt

h(x) is the observation function

Vt is Brownian motion representing noise in measurements

σv is the strength of the noise

Information structure:

potential function UZt(t, x) is allowed to depend on the history of observations

Zt is the filtration generated by {Zs; s ∈ [0, t]}
information may be used to violate 2nd law (Maxwell’s demon)

Objective: refine the 2nd law when we have access to noisy measurements
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Stochastic thermodynamic
2nd law with noisy measurements

Expected work conditioned on measurements:

E[W |Ztf ] =

∫ tf

0

E[
∂UZt

∂t
(t,Xt)|Zt]dt

=

∫ tf

0

∫
∂UZt

∂t
(t, x)q(t, x)dxdt

where q(t, x) is the density for the conditional distribution PXt|Zt

It evolves according to the Kushner-Stratonovich eq.

dq = ∇ · (q∇φ)dt+
1

σ2
v

q(h− ĥ)(dZt − ĥdt)

where φ =
1

γ
(U + kBT log(q)) and ĥ =

∫
hqdx.

Amirhossein Taghvaei 11 / 16 Amirhossein Taghvaei



2nd law with noisy measurements
Entropy production rate

Entropy production for conditional distribution:

dF(UZt , q) =

[∫
∂UZt

∂t
q dx− γ

∫
‖∇φ‖2q dx+

kBT

2σ2
v

∫
(h− ĥt)

2q dx

]
dt+ (Martingale)

First term is related to conditional expectation of work dE[W |Zt]

Second term

∫
‖∇φ‖2qdx ≥ ‖∂p

∂t
‖2W where p is the density for PX

Third term is related to mutual information between particle trajectory and
observation signal (Duncan, 1970)

I(X[0,tf ], Z[0,tf ]) =
1

2σ2
v

∫ tf

0

E[(h(Xt)− ĥt)
2]dt

Fourth term involves the innovation process and disappears after expectation

Amirhossein Taghvaei 12 / 16 Amirhossein Taghvaei



2nd law for continuous measurements

Main result

Consider the over-damped Langevin dynamics with access to continuous measurements.
Assume the initial and terminal potential functions are fixed to U0 and Uf respectively.
Then,

W −∆F ≥ γ

tf
W2

2(p0, ptf )− kBT (I(X[0,tf ];Z[0,tf ])− I(Xtf , Ztf ))

Extra term is the mutual information between the particle location and observations
as well as the remaining information that has not been used

Information can be used to extract work over a cycle (∆F = 0) (information
engines)

−W ≤ kBTI(X[0,tf ];Z[0,tf ])

The efficiency of a information engine is defined as

η =
extracted work

available information
=

−W
kBTI(X[0,tf ];Z[0,tf ])
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Analysis in linear Gaussian setting

Assumptions:

potential U(t, x) =
q0
2

(x− rt)2 is quadratic

rt is the control variable

observation function h(x) = x is linear

Stochastic optimal control problem:

W∗ = min
r(·)∈FZ

E
[∫ tf

0

∂U

∂t
(t,Xt)dt

]

Solution

optimal control law rt = (
1

2
− Pt)E[Xt|Zt] where Pt solves backward Ricatti eq.

maximum work output

−W∗ = − q0
2σ2

v

∫ tf

0

PtCov(Xt|Zt)dt
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Assumptions:

potential U(t, x) =
q0
2

(x− rt)2 is quadratic

rt is the control variable

observation function h(x) = x is linear

Stochastic optimal control problem:

W∗ = min
r(·)∈FZ

E
[∫ tf

0

∂U

∂t
(t,Xt)dt

]

Solution

optimal control law rt = (
1

2
− Pt)E[Xt|Zt] where Pt solves backward Ricatti eq.

maximum work output

−W∗ = − q0
2σ2

v

∫ tf

0

PtCov(Xt|Zt)dt
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Steady-state analysis
Trade-off between efficiency and power

The steady state average power and efficiency are

lim
tf→∞

−W∗

tf
=
q0kBT

γ

1

SNR
(
√

1 + SNR− 1)2

lim
tf→∞

η =
2

SNR
(
√

1 + SNR− 1)

where SNR =
2γkBT

q20σ
2
v
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Concluding remarks

Summary:

Tight bounds on maximum work from continuous stream of measurements

Tools from optimal control, nonlinear filtering, and optimal transportation

Optimal control law to extract maximum work in linear Gaussian setting

Open questions:

Beyond linear Gaussian setting → POMDP

Fluctuation theorems

Other stochastic models (finite-state space case)

Thank you for your attention!
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