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Outline

m Background on stochastic thermodynamics
= 2nd law of thermodynamics and Wasserstein geometry

m Generalization when continuous-time measurements are available
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Stochastic thermodynamics
Background

What is stochastic thermodynamics?

m study thermodynamics at the level of individual particle and far from equilibrium

= a branch of non-equilibrium statistical physics (developed over the last few decades)

L. Peliti & S. Pigolotti, Stochastic Thermodynamics: An Introduction. Princeton University Press, 2021.
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= a branch of non-equilibrium statistical physics (developed over the last few decades)

Applications:

= biological molecular machines (e.g. kinesin and myosin)

= artificial nano devices (energy of order kgT')

Questions:

®m minimum dissipation over finite time transitions

m maximum power from a stochastic thermodynamic engine

= how to extract power from noisy measurements (this work)

Tools from control can be used to formulate and study these questions

L. Peliti & S. Pigolotti, Stochastic Thermodynamics: An Introduction. Princeton University Press, 2021.
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Stochastic thermodynamics
Model

Overdamped Langevin eq.

vdX; = -V, U(t, X;)dt + V2DdB;

a particle in a medium of temperature T’
= manipulated by external potential U(t, z)
m 7 is the viscosity coefficient

m D = ~kpT is the diffusion constant
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Stochastic thermodynamics
Model

Overdamped Langevin eq.

vdX; = -V, U(t, X;)dt + V2DdB;

a particle in a medium of temperature T’
= manipulated by external potential U(t, z)
m 7 is the viscosity coefficient

m D = ~kpT is the diffusion constant

Potential U(t, z) is controlled to achieve certain objectives, e.g. extract work
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Stochastic thermodynamic
Definitions of work and heat for individual particle

Uo(x)

Energy:
E = Uy(Xo)

K. Sekimoto, Stochastic energetics. Springer, 2010.
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Stochastic thermodynamic
Definitions of work and heat for individual particle

Uo(:l?)

Energy:
E = Uy(Xo)
Work: energy exchange by changing the potential (with external agent)
W = Ui (Xo) — Uo(Xo)
Heat: energy exchange when particle moves (with medium)
Q = U1(X1) — Ur(Xo)
1st law: conservation of energy

AE=Q+W

K. Sekimoto, Stochastic energetics. Springer, 2010.
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Stochastic thermodynamic
Definitions of work and heat in continuous-time

Consider continuous-time trajectory {X;;t¢ € [0,¢f]} and {U(¢,-);t € [0,tr]}

m change in energy

dE, = dU(t, X;) = %—[t](t, X,)dt + VaU(t, Xt) o dX;
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Stochastic thermodynamic
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Consider continuous-time trajectory {X;;t¢ € [0,¢f]} and {U(¢,-);t € [0,tr]}

m change in energy

dE, = dU(t, X;) = %—[Z(t,Xt)dt + VLUt X1) 0 dX;
= Work
tr U
= —(t, X
. o (¢, X¢)dt
m heat
g
Q :/ V.U(t, Xt) o dX,
0
m 1st law

AE=W +Q
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Stochastic thermodynamic
Definitions of work and heat for ensemble

m Average energy

£ = B[U(t, Xi)] = / Ut o)p(t, o)dz

p(t, ) is probability dist. of X; given by Fokker-Planck eq.

8]) _ 1 kT
a_7v (pVU) + > Ap
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Stochastic thermodynamic
Definitions of work and heat for ensemble

m Average energy
£ = B[U(t, Xi)] = / Ut o)p(t, o)dz
m Average work

&g &g
W= / B2 ¢, X))t = / U (¢ o)p(t, z)ddt
o Bl . ] o

m Average heat

&5 Gy Op
o— / E[V,U(t, X:) 0 dXy] = / / U(t,2) 22 (1, 2)
0 0

p(t, ) is probability dist. of X; given by Fokker-Planck eq.
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Stochastic thermodynamic
2nd law of thermodynamics

Entropy:

S) = [ 1og(p(a))p(e)da
Free energy:
F.U) = [ Ul@p()ds - koTS()

Second law:

AStot - ASsys U ASenv > 0 — W—-AF = Wiiss > 0

Question: how to prove and refine 2nd law for overdamped Langevin eq.?
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Background on Wasserstein geometry

= Consider the curve {p(t,z);t € [0,1]} in the space of probability distributions
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Background on Wasserstein geometry

= Consider the curve {p(t,z);t € [0,1]} in the space of probability distributions
= A unique vector-field V(t, z) is associated with the curve such that
op
ot +

m The Wasserstein Riemannian metric at each point

V- (pVe) =0

op 2 L 2
Ll = [ 1v0lpde
m The length of the curve is

lengthy (po1)) : /n It

m The length of the geodesic connecting po and p; is the 2-Wasserstein distance

Wa(po,p1) := min{lengthy, (pjo,1)); with fixed end-points}
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2nd law and Wasserstein geometry
Entropy production rate

. . . ey . 1 - 1y
m Free energy is also relative entropy with respect to equilibrium peq = Ze Lo

F(p,U) = kT D(pllpeq) + kT log(Z)
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. . . ey . 1 - 1y
m Free energy is also relative entropy with respect to equilibrium peq = Ze Lo

F(p,U) = kT D(pllpeq) + kT log(Z)

m If U is constant, the time-derivative of free energy along Fokker-Planck flow is
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2nd law and Wasserstein geometry
Entropy production rate

. . . ey . 1 - 1y
m Free energy is also relative entropy with respect to equilibrium peq = Ze Lo

F(p,U) = kT D(pllpeq) + kT log(Z)

m If U is constant, the time-derivative of free energy along Fokker-Planck flow is

d
LF0) =2

m When U is time-varying,

d BU
SFm0) = [ Spdz -2y
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2nd law and Wasserstein geometry

2nd law with no measurements

For the over-damped Langevin eq., we have the identity
ty 8
w-aF—y [T 122 fat
0

and the bound 5 ~
W= AF 2 o lengthy (Pro. ) 2 5W§<po,pf>

m This is refinement of the second law for finite-time non-equilibrium transitions
m The bound is achieved when moving with constant velocity along the geodesic

= RHS converges to zero as transition time ¢y — oo (quasi-static limit)

E. Aurell, C. Mejia-Monasterio, and P. Muratore-Ginanneschi, Optimal protocols and optimal transport in stochastic thermodynamics, Phys. Rev. Lett, 2011
Y. Chen, T. Georgiou, and A. Tannenbaum, " Stochastic control and non-equilibrium thermodynamics: fundamental limits,” IEEE TAC, 2019.
R. Fu, A. Taghvaei, Y. Chen, and T. T. Georgiou, " Maximal power output of a stochastic thermodynamic engine”, Automatica, 2021.
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Background on stochastic thermodynamics
2nd law of thermodynamics and Wasserstein geometry

m Generalization when continuous-time measurements are available
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Stochastic thermodynamic
With noisy measurements

Model:
ydX; = —=VU(t, X;)dt + V2DdB,
dZt = h(Xt)dt =+ Jvd‘/t

= h(z) is the observation function
m V; is Brownian motion representing noise in measurements

u 0, is the strength of the noise
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m potential function U= (t,x) is allowed to depend on the history of observations
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Stochastic thermodynamic
With noisy measurements

Model:

ydX; = —=VU(t, X;)dt + V2DdB,
dZt = h(Xt)dt =+ G'Ud‘/t

= h(z) is the observation function
m V} is Brownian motion representing noise in measurements

u 0, is the strength of the noise

Information structure:
m potential function U= (t,x) is allowed to depend on the history of observations
m Z, is the filtration generated by {Z,; s € [0,t]}

= information may be used to violate 2nd law (Maxwell's demon)

Objective: refine the 2nd law when we have access to noisy measurements
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Stochastic thermodynamic
2nd law with noisy measurements

Expected work conditioned on measurements:

tr QU=
BWz) = [ B2 6 X0 2
0
ty Z
:/ 8g (t,z)q(t, z)dzdt
0 t

m where ¢(t, x) is the density for the conditional distribution Py, |z,

u It evolves according to the Kushner-Stratonovich eq.

1 . R
dg =V - (¢V)dt + —q(h — h)(dZ, — hdt)

» where ¢ = — (U + kpT'log(q)) and h = /hqu.

2|+~
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2nd law with noisy measurements
Entropy production rate

Entropy production for conditional distribution:

U=
ot

kB

dF(U?,q) = [ gdz — /(h —hi)%q dx] dt + (Martingale)

m First term is related to conditional expectation of work dE[W|Z;]
= Second term /||Vq5||2qu > ||%||‘2;V where p is the density for Px

m Third term is related to mutual information between particle trajectory and
observation signal (Duncan, 1970)

1 i A
T(Xoiy0 Ziois) = 557 | BIRCXD) = ho)?las

m Fourth term involves the innovation process and disappears after expectation
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2nd law for continuous measurements

Main result

Consider the over-damped Langevin dynamics with access to continuous measurements.
Assume the initial and terminal potential functions are fixed to Uy and Uy respectively.
Then,

W—AF > %Wg(poaptf) — kBT (Z(X(0,¢,15 Z(0,¢51)) — L(Xts, Zty))

m Extra term is the mutual information between the particle location and observations
as well as the remaining information that has not been used
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2nd law for continuous measurements

Main result

Consider the over-damped Langevin dynamics with access to continuous measurements.
Assume the initial and terminal potential functions are fixed to Uy and Uy respectively.

Then,
W—AF > %Wg(poaptf) — kBT (Z(X(0,¢,15 Z(0,¢51)) — L(Xts, Zty))

m Extra term is the mutual information between the particle location and observations
as well as the remaining information that has not been used

m Information can be used to extract work over a cycle (AF = 0) (information

engines)
W < kgTZ(X0,t,1; Z[0,¢,])

m The efficiency of a information engine is defined as

- extracted work _ -W
" available information ksTI(X(0.1/1; Zjo,t,])
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Analysis in linear Gaussian setting

Assumptions:
= potential U(t,z) = %O(m —1¢)” is quadratic
m 7 is the control variable

m observation function h(z) = z is linear
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Analysis in linear Gaussian setting

Assumptions:
= potential U(t,z) = %O(m —r¢)? is quadratic
m 7 is the control variable
m observation function h(z) = z is linear

Stochastic optimal control problem:

tr U
*= min E (¢, X, )dt
W= i [0 at (b Xe) }
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Analysis in linear Gaussian setting

Assumptions:
= potential U(t,z) = %O(m —1¢)” is quadratic
m 7 is the control variable
m observation function h(z) = z is linear

Stochastic optimal control problem:

= optimal control law 7, = (% — P,)E[X¢|Z:] where P; solves backward Ricatti eq.

® maximum work output

W =

/ PtCOV(thzt)

20v
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Steady-state analysis
Trade-off between efficiency and power

The steady state average power and efficiency are

fm = quBTL(\A +SNR —1)2

tg—soo Ly ’y SNR

lim n= TSN
Gp=>€D = SNR (\/4—7 )
kT
where SNR = 72 32
450
qokpT |
7 o resresasnpnanaate
f"'"‘ — Power
g {08
S 7 (efficiency)
f 106
{04
{02
0 ‘ ‘ ‘ ; 0
0 1 2 3 . ; - !

o, (measurement noise)
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Concluding remarks

Summary:

m Tight bounds on maximum work from continuous stream of measurements
m Tools from optimal control, nonlinear filtering, and optimal transportation

m Optimal control law to extract maximum work in linear Gaussian setting

Open questions:
m Beyond linear Gaussian setting — POMDP

m Fluctuation theorems

= Other stochastic models (finite-state space case)

| Thank you for your attention! |
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