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Illustrative example

Hidden state: X ∼ N(0, 1)

Observation: Y = 0.5X 2 + σwW , W ∼ N(0, 1)

Objective: find P(X |Y = 1) ?
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Illustrative example
Degenerate likelihood

Hidden state: X ∼ N(0, I )

Observation: Y = 0.5X 2 + σwW , W ∼ N(0, I )
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Illustrative example
Degenerate likelihood

Sequential Important Resampling filter suffers from weight degeneracy

(T (X ,Y ),Y )−−−−−−−−−−−−−→

−−−−−−−−−−−−−→
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Optimal transport formulation of the Bayes’ law

Bayes law: P(X |Y ) =
P(X )P(Y |X )

P(Y )

= T (·;Y )#PX

= ∇x f̄ (·;Y )#PX

where f̄ = argmin
f∈L1(X×Y)

E(X ,Y )∼PX⊗PY
[f (X ;Y )] + E(X ,Y )∼PXY

[f ⋆(X ;Y )]

features:

sample based algorithm

stochastic optimization

using neural network

overcome challenges:

degenerate likelihood

multi-model distribution

high dimension problem

A. Taghvaei, B. Hosseini, An optimal transport formulation of Bayes’ law for nonlinear filtering algorithms, 2022
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Outline

Background on the filtering problem

Optimal Transport Particle Filters

Error Analysis
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Nonlinear filtering problem
Mathematical model

X0 X1 X2

Y1 Y2

. . .
a(·|·) a(·|·)

h(·|·) h(·|·)

Xk is the state (unknown)

Yk is the observation

have access to simulate through a(·|·), h(·|·)

Questions: Given history of observation Y1:k := {Y1, . . . ,Yk},
What is the most likely value of Xk?

What is the probability of Xk ∈ A?

What is the best m.s.e estimate for Xk?

. . .

Answer: given by the conditional distribution πk = P(Xk |Y1:k) (posterior, belief)

J. Xiong, An introduction to stochastic filtering theory, 2008
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What is the most likely value of Xk? argmax

x
P(Xk = x |Y1:k)

What is the probability of Xk ∈ A?

∫
A

P(Xk = x |Y1:k)dx

What is the best m.s.e estimate for Xk?
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Recursive update for posterior

In principle: given πk = P(Xk |Y1:k), obtain πk+1 = P(Xk+1|Y1:k+1) according to

Step 1: propagation update

π
dynamics

−−−−−−→ Aπ :=

∫
Rn

a(·|x)π(x)dx

Step 2: conditioning update

π
Bayes law

−−−−−−→ Byπ :=
h(y |·)π(·)∫

Rn h(y |x)πk(x)dx

where πk+1 = BYkAπk

In practice: No closed-form solution except special cases (e.g. linear Gaussian)

Kalman filter fails to represent multi-modal distributions → particle filters

Particle filter exact as N → ∞,but suffer from weight degeneracy in high dimension

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960
R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory, 1961
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Transport view point

suppose we have particles that represent samples from πk

we like to generate new set of particles that represent samples from πk+1

the dynamic update is straightforward, however, the Bayes update is challenging

Transport view-point: update particles with a transport map from πk to πk+1

X i
k+1 = Tk(X

i
k)

Question: How to numerically approximate the transport map Tk?
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Optimal transport particle filter

true observation Yk ∼ h(·|Xk)

given particles {X i
k}Ni=1 ∼ πk , generate

Y i
k ∼ h(·|X i

k)

use {(X i
k ,Y

i
k)}Ni=1 to obtain f̄ by solving

min
f∈F

1

N

N∑
i=1

f (X i
k ;Y

σi
k ) +

1

N

N∑
i=1

f ⋆(X i
k ;Y

i
k)

where F is a paramteric class of functions

class of quadratic functions → Optimal Transport EnKF

subset of convex functions (e.g. ICNNs)

update the particles according to

X i
k+1 = ∇f̄k(X

i
k ,Yk) = T (X i

k ,Yk)
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Numerical example: Dynamical model

Xt = (1− α)Xt−1 + σVVt , X0 ∼ N (0, In),

Yt = h(Xt) + σWWt ,
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Numerical example: Dynamical model

Xt = (1− α)Xt−1 + σVVt , X0 ∼ N (0, In),

Yt = h(Xt) + σWWt ,

h(Xt) = X 2
t
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Definitions

Optimization problem:

min
f∈CVXx

J(f , π) : = E[f (X̄ ,Y ) + f ⋆(X ,Y )]

The exact process:

π̄t = ∇x f̄t(·,Yt)#Aπ̄t−1 = ByAπ̄t−1

f̄t = argmin
f∈CVXx

J(f ,Aπ̄t−1)

The approximate mean-field process: F ⊂ CVXx

πF
t = ∇x f

F
t (·,Yt)#AπF

t−1

f Ft = argmin
f∈F

J(f ,AπF
t−1)

The finite particle system: S is a sampling operator

π̃
(F,N)
t = ∇x f̃

(F,N)
t (·,Yt)#SNAπ̃

(F,N)
t−1

f̃
(F,N)
t = argmin

f∈F
J(f ,SNAπ̃

(F,N)
t−1 )
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Error Analysis

Theorem

Consider the exact distribution π̄t and the particle distribution π̃
(F,N)
t . Assume

1 The exact filter is ”uniformly geometrically stable”.

2 The optimality gap between J(f ,SNAπ̃
(F,N)
t ) and J(f ,Aπ̃

(F,N)
t ) is uniformly

bounded by ϵF,N for all t and N.

3 For all y , t, and N, the function f
(F,N)
t (·, y) is convex and ∇x f

(F,N)
t (·, y) is

β-Lipschitz.

Then, it holds that

d(π̃
(F,N)
t , πt) ≤ C

(√
2βϵF,N +

1√
N

)
, ∀t,

where all constants are time-independent.
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Summary

Mathematical model:

Nonlinear filtering: compute the posterior πk = P(Xk |Y1:k)

OT approach:

Variational problem:

Tk = ∇x f̄k , where f̄k = argmin
f∈F

J(N)(f ; {(X i
k ,Y

i
k)})

Optimal transportation methods in nonlinear filtering: The feedback particle filter, IEEE CSM, 2021
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THANK YOU
ANY QUESTIONS?
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Particle filters
Monte-Carlo approximation

approximate πk with weighted empirical distribution of particles

apply the update rule to the particles and weights

Step 1: update the weights according to Bayes rule

w i
k+1 ∝ w i

kh(Yk |X i
k)

Step 2: update particles according to the dynamics

Properties:

exact in the limit as N → ∞
weight degeneracy → curse of dimensionality

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
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Derivation of the variational formula

We want to find a map T that transports PX to PX |Y with minimum cost

min
T

EX∼PX [∥T (X )− X∥2], s.t. T#PX = PX |Y

The Kantorovich dual formulation removes the constraint

min
f∈L1(X )

EX∼PX [f (X )] + EX∼PX|Y [f
⋆(X )] but PX |Y is not available

Take expectation with respect to Y

min
f∈L1(X×Y)

E(X ,Y )∼PX⊗PY
[f (X ;Y )] + E(X ,Y )∼PXY

[f ⋆(X ;Y )]

Theorem

Assume E[∥X∥2] < ∞ and PX admits density.
Then, the variational problem admits a unique solution f̄ that satisfies:

PX |Y = ∇x f̄ (·;Y )#PX , (a.e.)
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Numerical example: Lorenz 63 model

Ẋ = f (X ), X0 ∼ N (µ0, σ
2
0 I3),

Yt =

Xt(1)

Xt(3)

+Wt , Wt ∼ N (0, σI2)
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Numerical example: MNIST Dataset
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Numerical example: MNIST Dataset

G : R100 → R28×28, X ∼ N(0, I100)

Yt = h(G(X ), ct) +Wt , Wt ∼ N(0, σ2Ir2)

True image

Observed part

     EnKF      OT      SIR
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Numerical example: MNIST Dataset
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Numerical example: Dynamic example on MNIST
Dataset

Model:
Xt+1 = (1− α)Xt + Vt , Vt ∼ N(0, σ2

V I100)

Yt+1 = h(G(Xt+1), ct+1) +Wt+1, Wt ∼ N(0, σ2
W Ir2)

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

   
En

KF
   

OT
   

SI
R
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