Accelerated Gradient Flow for Probability Distributions

CSL Student Conference, UIUC, February, 2019

Amirhossein Taghvaei Joint work with P. G. Mehta

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Feb 7, 2019

Motivation and objective

- Many machine learning problems are modelled as an optimization problem on the space of probability distributions
 - Bayesian inference
 - Learning generative models
 - Policy optimization in reinforcement learning
- Solution approaches by constructing gradient flows for probability distributions
 - Liu & Wang, 2016. "Stein variational gradient descent"
 - Zhang, et. al. 2018. "Policy optimization as wasserstein gradient flows"
 - Frogner & Poggio, 2018. "Approximate inference with wasserstein gradient flows
 - Chizat & Bach, 2018. "On the global convergence of gradient descent for over-parameterized models using optimal transport"
- This talk: Construct accelerated gradient flows for probability distribution

Motivation and objective

- Many machine learning problems are modelled as an optimization problem on the space of probability distributions
 - Bayesian inference
 - Learning generative models
 - Policy optimization in reinforcement learning
- Solution approaches by constructing gradient flows for probability distributions
 - Liu & Wang, 2016. "Stein variational gradient descent"
 - Zhang, et. al. 2018. "Policy optimization as wasserstein gradient flows"
 - Frogner & Poggio, 2018. "Approximate inference with wasserstein gradient flows"
 - Chizat & Bach, 2018. "On the global convergence of gradient descent for over-parameterized models using optimal transport"
- This talk: Construct accelerated gradient flows for probability distribution

Motivation and objective

- Many machine learning problems are modelled as an optimization problem on the space of probability distributions
 - Bayesian inference
 - Learning generative models
 - Policy optimization in reinforcement learning
- Solution approaches by constructing gradient flows for probability distributions
 - Liu & Wang, 2016. "Stein variational gradient descent"
 - Zhang, et. al. 2018. "Policy optimization as wasserstein gradient flows"
 - Frogner & Poggio, 2018. "Approximate inference with wasserstein gradient flows"
 - Chizat & Bach, 2018. "On the global convergence of gradient descent for over-parameterized models using optimal transport"
- This talk: Construct accelerated gradient flows for probability distribution

ow

- Variational formulation on accelerated methods in optimization (Wibisono, et. al. 2017).
- (2) Riemannian geometry for probability distributions from optimal transportation theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)
- (3) Extend (1) using (2) to formulate a variational from for probability distributions that produces accelerated flows

Gradient descent (1) Accelerated methods Space of probability distributions Wasserstein gradient flow

- Variational formulation on accelerated methods in optimization (Wibisono, et. al. 2017).
- (2) Riemannian geometry for probability distributions from optimal transportation theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)
- (3) Extend (1) using (2) to formulate a variational from for probability distributions that produces accelerated flows

Gradient descent (2) Wasserstein gradient flow (1) Accelerated methods

- Variational formulation on accelerated methods in optimization (Wibisono, et. al. 2017).
- (2) Riemannian geometry for probability distributions from optimal transportation theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)
- (3) Extend (1) using (2) to formulate a variational from for probability distributions that produces accelerated flows

- Variational formulation on accelerated methods in optimization (Wibisono, et. al. 2017).
- (2) Riemannian geometry for probability distributions from optimal transportation theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)
- (3) Extend (1) using (2) to formulate a variational from for probability distributions that produces accelerated flows

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (Assume f is convex)

Gradient flow

$$\dot{x}_t = -\nabla f(x_t) \implies f(x_t) - f(\bar{x}) \le O(\frac{1}{t})$$

Accelerated gradient flow (Su, et. al. 2014):

$$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t) \quad \Longrightarrow \quad f(x_t) - f(\bar{x}) \le O(\frac{1}{t^2})$$

 \blacksquare $\{x_t\}$ is the solution to the following variational problem (Wibinoso, et. al. 2016)

Minimize:
$$\int_0^\infty t^3 \left(\frac{1}{2}|u_t|^2 - f(x_t)\right) dt$$

Subject to:
$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t, \quad x_0 = x, \ \dot{x}_0 = v_t$$

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (Assume f is convex)

Gradient flow:

$$\dot{x}_t = -\nabla f(x_t) \implies f(x_t) - f(\bar{x}) \le O(\frac{1}{t})$$

Accelerated gradient flow (Su, et. al. 2014)

$$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t) \quad \Longrightarrow \quad f(x_t) - f(\bar{x}) \le O(\frac{1}{t^2})$$

{ x_t } is the solution to the following variational problem (Wibinoso, et. al. 2016):

Minimize:
$$\int_0^\infty t^3 \left(\frac{1}{2}|u_t|^2 - f(x_t)\right) dt$$

Subject to:
$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t, \quad x_0 = x, \ \dot{x}_0 = v_t$$

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (Assume f is convex)

Gradient flow:

$$\dot{x}_t = -\nabla f(x_t) \implies f(x_t) - f(\bar{x}) \le O(\frac{1}{t})$$

Accelerated gradient flow (Su, et. al. 2014):

$$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t) \implies f(x_t) - f(\bar{x}) \le O(\frac{1}{t^2})$$

{ x_t } is the solution to the following variational problem (Wibinoso, et. al. 2016):

Minimize:
$$\int_0^\infty t^3 (\frac{1}{2} |u_t|^2 - f(x_t)) dt$$

Subject to:
$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t, \quad x_0 = x, \; \dot{x}_0 = \iota$$

Optimization problem:

$$\min_{x \in \mathbb{R}^d} f(x)$$
 (Assume f is convex)

Gradient flow:

$$\dot{x}_t = -\nabla f(x_t) \implies f(x_t) - f(\bar{x}) \le O(\frac{1}{t})$$

■ Accelerated gradient flow (Su, et. al. 2014):

$$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t) \quad \Longrightarrow \quad f(x_t) - f(\bar{x}) \le O(\frac{1}{t^2})$$

{ x_t } is the solution to the following variational problem (Wibinoso, et. al. 2016):

Minimize:
$$\int_0^\infty t^3 (\frac{1}{2} |u_t|^2 - f(x_t)) dt$$

Subject to:
$$\frac{\mathrm{d}x_t}{\mathrm{d}t} = u_t, \quad x_0 = x, \ \dot{x}_0 = v$$

Summary

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	?
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$?
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

Objective functional:

$$\mathsf{F}:\mathcal{P}_2(\mathbb{R}^d)\to\mathbb{R}$$

Wasserstein gradient: $abla_W \mathsf{F}(
ho): \mathbb{R}^d o \mathbb{R}^d$ is a vector field that satisfies

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathsf{F}(\rho_t) \big|_{t=0} &= \langle \nabla_W \mathsf{F}(\rho), u \rangle_{L^2(\rho)}, \\ \text{for all path } \{\rho_t\} \text{ s.t } & \frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t u) = 0 \end{split}$$

Example

$$\mathsf{F}(
ho) = \mathsf{D}(
ho \|
ho_\infty)$$
 (relative entropy)
$$\implies \nabla_W \mathsf{F}(
ho)(x) = \nabla \log(
ho(x)) + \nabla f(x)$$

Objective functional:

$$\mathsf{F}:\mathcal{P}_2(\mathbb{R}^d) o \mathbb{R}$$

Wasserstein gradient: $\nabla_W \mathsf{F}(\rho) : \mathbb{R}^d \to \mathbb{R}^d$ is a vector field that satisfies

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathsf{F}(\rho_t) \big|_{t=0} &= \langle \nabla_W \mathsf{F}(\rho), u \rangle_{L^2(\rho)}, \\ \text{for all path } \{\rho_t\} \text{ s.t. } \frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t u) &= 0 \end{split}$$

Example:

$$\mathsf{F}(\rho) = \mathsf{D}(\rho || \rho_{\infty}) \quad \text{(relative entropy)}$$

$$\implies \nabla_W \mathsf{F}(\rho)(x) = \nabla \log(\rho(x)) + \nabla f(x)$$

where $f = -\log(\rho_{\infty})$

Objective functional:

$$\mathsf{F}:\mathcal{P}_2(\mathbb{R}^d) o\mathbb{R}$$

■ Wasserstein gradient: $\nabla_W \mathsf{F}(\rho) : \mathbb{R}^d \to \mathbb{R}^d$ is a vector field that satisfies

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \mathsf{F}(\rho_t) \big|_{t=0} &= \langle \nabla_W \mathsf{F}(\rho), u \rangle_{L^2(\rho)}, \\ \text{for all path } \{\rho_t\} \text{ s.t } & \frac{\partial \rho_t}{\partial t} + \nabla \cdot (\rho_t u) = 0 \end{split}$$

Example:

$$\begin{aligned} \mathsf{F}(\rho) &= \mathsf{D}(\rho \| \rho_{\infty}) \quad \text{(relative entropy)} \\ \implies & \nabla_W \mathsf{F}(\rho)(x) = \nabla \log(\rho(x)) + \nabla f(x) \end{aligned}$$

where $f = -\log(\rho_{\infty})$

Optimization problem:

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \mathsf{F}(\rho)$$

Wasserstein gradient flow:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla_W \mathsf{F}(\rho_t))$$

Example: $F(\rho) = D(\rho || \rho_{\infty})$, then (Jordan, et. al. 1998)

$$rac{\partial
ho_t}{\partial t} =
abla \cdot (
ho_t
abla f) + \Delta
ho_t$$
 (Fokker-Planck eq.)

Probabilistic form

$$\mathrm{d}X_t = -\nabla f(X_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}B_t,$$
 (Langevin sde)

in the sense that $ho_t = \mathsf{Law}(X_t)$

Optimization problem:

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \mathsf{F}(\rho)$$

■ Wasserstein gradient flow:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla_W \mathsf{F}(\rho_t))$$

Example: $F(\rho) = D(\rho || \rho_{\infty})$, then (Jordan, et. al. 1998)

$$rac{\partial
ho_t}{\partial t} =
abla \cdot (
ho_t
abla f) + \Delta
ho_t$$
 (Fokker-Planck eq.)

Probabilistic form

$$\mathrm{d}X_t = -\nabla f(X_t)\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}B_t,$$
 (Langevin sde)

in the sense that $\rho_t = \mathsf{Law}(X_t)$

Optimization problem:

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathsf{F}(\rho)$$

Wasserstein gradient flow:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla_W \mathsf{F}(\rho_t))$$

■ Example: $F(\rho) = D(\rho || \rho_{\infty})$, then (Jordan, et. al. 1998)

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla f) + \Delta \rho_t$$
 (Fokker-Planck eq.)

Probabilistic form

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$$
, (Langevin sde)

in the sense that $\rho_t = \text{Law}(X_t)$

Optimization problem:

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathsf{F}(\rho)$$

Wasserstein gradient flow:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla_W \mathsf{F}(\rho_t))$$

■ Example: $F(\rho) = D(\rho || \rho_{\infty})$, then (Jordan, et. al. 1998)

$$rac{\partial
ho_t}{\partial t} =
abla \cdot (
ho_t
abla f) + \Delta
ho_t$$
 (Fokker-Planck eq.)

Probabilistic form:

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$$
, (Langevin sde)

in the sense that $\rho_t = \text{Law}(X_t)$.

Optimization problem:

$$\min_{\rho \in \mathcal{P}_2(\mathbb{R}^d)} \ \mathsf{F}(\rho)$$

Wasserstein gradient flow:

$$\frac{\partial \rho_t}{\partial t} = \nabla \cdot (\rho_t \nabla_W \mathsf{F}(\rho_t))$$

■ Example: $F(\rho) = D(\rho || \rho_{\infty})$, then (Jordan, et. al. 1998)

$$rac{\partial
ho_t}{\partial t} =
abla \cdot (
ho_t
abla f) + \Delta
ho_t$$
 (Fokker-Planck eq.)

Probabilistic form:

$$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$$
, (Langevin sde)

in the sense that $\rho_t = \text{Law}(X_t)$.

Summary

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_\infty)$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian		?
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$?

Proposed variational formulation

Variational problem (probabilistic form):

$$\begin{split} & \text{Minimize} \quad \mathsf{E}\left[\int_0^\infty t^3 (\frac{1}{2}|U_t|^2 - \tilde{\mathsf{F}}(\rho_t, X_t)) \, \mathrm{d}t\right] \\ & \text{Subject to} \quad \frac{\mathrm{d}X_t}{\mathrm{d}t} = U_t, \quad X_0 \sim \rho_0, \ \dot{X}_0 \sim q_0 \end{split}$$

where $\rho_t = \mathsf{Law}(X_t)$.

It is a mean-field optimal control problem (Bensoussan, et al. 2013, Carmona & Delarue, 2017)

Proposed variational formulation

Variational problem (probabilistic form):

$$\begin{split} & \text{Minimize} \quad \mathsf{E}\left[\int_0^\infty t^3 (\frac{1}{2}|U_t|^2 - \tilde{\mathsf{F}}(\rho_t, X_t)) \, \mathrm{d}t\right] \\ & \text{Subject to} \quad \frac{\mathrm{d}X_t}{\mathrm{d}t} = U_t, \quad X_0 \sim \rho_0, \ \dot{X}_0 \sim q_0 \end{split}$$

where $\rho_t = \mathsf{Law}(X_t)$.

It is a mean-field optimal control problem (Bensoussan, et al. 2013, Carmona & Delarue, 2017)

Main result

Theorem

Consider the proposed variational problem. Then,

[I (Maximum principle) The optimal trajectory satisfies the second-order system:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla_W \mathsf{F}(\rho_t)(X_t), \quad X_0 \sim \rho_0$$

where $\rho_t = \mathsf{Law}(X_t)$.

 $\ \, \blacksquare$ (Convergence) If the functional F is displacement convex, and the dimension d=1 Then

$$F(\rho_t) - \min_{\rho} F(\rho) \le O(\frac{1}{t^2})$$

We expect the dimension d=1 assumption is not necessary

Main result

Theorem

Consider the proposed variational problem. Then,

(Maximum principle) The optimal trajectory satisfies the second-order system:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla_W \mathsf{F}(\rho_t)(X_t), \quad X_0 \sim \rho_0$$

where $\rho_t = \mathsf{Law}(X_t)$.

 ${\Bbb Z}$ (Convergence) If the functional F is displacement convex, and the dimension d=1. Then

$$F(\rho_t) - \min_{\rho} F(\rho) \le O(\frac{1}{t^2})$$

We expect the dimension d=1 assumption is not necessary

Main result

Theorem

Consider the proposed variational problem. Then,

(Maximum principle) The optimal trajectory satisfies the second-order system:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla_W \mathsf{F}(\rho_t)(X_t), \quad X_0 \sim \rho_0$$

where $\rho_t = \mathsf{Law}(X_t)$.

 ${\Bbb Z}$ (Convergence) If the functional F is displacement convex, and the dimension d=1. Then

$$\mathsf{F}(\rho_t) - \min_{\rho} \mathsf{F}(\rho) \le O(\frac{1}{t^2})$$

We expect the dimension d=1 assumption is not necessary

Minimizing relative entropy

■ If $F(\rho) = D(\rho \| \rho_{\infty})$ where $\rho_{\infty} = e^{-f}$. Then the accelerated flow is

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(
ho_t(X_t))}_{ ext{mean-field term}}, \quad X_0 \sim
ho_0$$

- $F(\rho)$ is displacement convex iff f(x) is convex
- If ρ_{∞} is Gaussian, then X_t is also Gaussian and the mean evolves according to the accelerated gradient flow in Euclidean space

Minimizing relative entropy

■ If $F(\rho) = D(\rho \| \rho_{\infty})$ where $\rho_{\infty} = e^{-f}$. Then the accelerated flow is

$$\ddot{X}_t = -rac{3}{t}\dot{X}_t -
abla f(X_t) - \underbrace{rac{
abla \log(
ho_t(X_t))}{
abla}}_{ ext{mean-field term}}, \quad X_0 \sim
ho_0$$

- lacksquare $F(\rho)$ is displacement convex iff f(x) is convex
- \blacksquare If ho_{∞} is Gaussian, then X_t is also Gaussian and the mean evolves according to the accelerated gradient flow in Euclidean space

Minimizing relative entropy

• If $F(\rho) = D(\rho \| \rho_{\infty})$ where $\rho_{\infty} = e^{-f}$. Then the accelerated flow is

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}, \quad X_0 \sim \rho_0$$

- $lackbox{ } {\sf F}(
 ho)$ is displacement convex iff f(x) is convex
- If ρ_{∞} is Gaussian, then X_t is also Gaussian and the mean evolves according to the accelerated gradient flow in Euclidean space

Accelerated flow for minimizing relative entropy

$$\ddot{X}_t = -rac{3}{t}\dot{X}_t -
abla f(X_t) - \underbrace{rac{
abla \log(
ho_t(X_t))}{
abla}}_{ ext{mean-field term}}, \quad X_0 \sim
ho_0$$

Realized with system of interacting particles $\{X_t^i\}_{i=1}^N$

$$\ddot{X}_t^i = -rac{3}{t}\dot{X}_t^i -
abla f(X_t^i) - \underbrace{I_t^{(N)}(X_t^i)}_{ ext{interaction term}}, \quad X_0^i \overset{ ext{i.i.d}}{\sim}
ho_0$$

- (parametric) Gaussian approximation
- (non-parametric) Diffusion-map approximation, density estimation
- Time discretization using the symplectic method

Accelerated flow for minimizing relative entropy

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}, \quad X_0 \sim \rho_0$$

lacksquare Realized with system of interacting particles $\{X_t^i\}_{i=1}^N$

$$\ddot{X}_t^i = -\frac{3}{t}\dot{X}_t^i - \nabla f(X_t^i) - \underbrace{I_t^{(N)}(X_t^i)}_{\text{interaction term}}, \quad X_0^i \overset{\text{i.i.d}}{\sim} \rho_0$$

- (parametric) Gaussian approximation
- (non-parametric) Diffusion-map approximation, density estimation
- Time discretization using the symplectic method

Accelerated flow for minimizing relative entropy

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(
ho_t(X_t))}_{ ext{mean-field term}}, \quad X_0 \sim
ho_0$$

lacksquare Realized with system of interacting particles $\{X_t^i\}_{i=1}^N$

$$\ddot{X}_t^i = -\frac{3}{t} \dot{X}_t^i - \nabla f(X_t^i) - \underbrace{I_t^{(N)}(X_t^i)}_{\text{interaction term}}, \quad X_0^i \stackrel{\text{i.i.d}}{\sim} \rho_0$$

- (parametric) Gaussian approximation
- (non-parametric) Diffusion-map approximation, density estimation
- Time discretization using the symplectic method

Accelerated flow for minimizing relative entropy

$$\ddot{X}_t = -rac{3}{t}\dot{X}_t -
abla f(X_t) -
abla \frac{\log(
ho_t(X_t))}{\log(\rho_t(X_t))}, \quad X_0 \sim
ho_0$$

 \blacksquare Realized with system of interacting particles $\{X_t^i\}_{i=1}^N$

$$\ddot{X}_t^i = -\frac{3}{t}\dot{X}_t^i - \nabla f(X_t^i) - \underbrace{I_t^{(N)}(X_t^i)}_{\text{interaction term}}, \quad X_0^i \overset{\text{i.i.d}}{\sim} \rho_0$$

- (parametric) Gaussian approximation
- (non-parametric) Diffusion-map approximation, density estimation
- Time discretization using the symplectic method

Accelerated flow for minimizing relative entropy

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}, \quad X_0 \sim \rho_0$$

 \blacksquare Realized with system of interacting particles $\{X_t^i\}_{i=1}^N$

$$\ddot{X}_t^i = -\frac{3}{t} \dot{X}_t^i - \nabla f(X_t^i) - \underbrace{I_t^{(N)}(X_t^i)}_{\text{interaction term}}, \quad X_0^i \overset{\text{i.i.d}}{\sim} \rho_0$$

- (parametric) Gaussian approximation
- (non-parametric) Diffusion-map approximation, density estimation
- Time discretization using the symplectic method

Numerical example Gaussian

■ The target distribution is Gaussian

Numerical example non-Gaussian

■ The target distribution is mixture of two Gaussians

Comparison to Hamiltonian MCMC

Proposed accelerated flow:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}$$

Continuous-time limit of Hamiltonian MCMC (under-damped Langevin eq.)

$$\mathrm{d}X_t = v_t\,\mathrm{d}t$$
 $\mathrm{d}v_t = -\gamma v_t\,\mathrm{d}t - \nabla f(X_t)\,\mathrm{d}t + \underbrace{\sqrt{2}\,\mathrm{d}B_t}_{ ext{stochastic term}}$

Trade-off between computational efficiency and accuracy

Comparison to Hamiltonian MCMC

Proposed accelerated flow:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}$$

Continuous-time limit of Hamiltonian MCMC (under-damped Langevin eq.)

$$\mathrm{d}X_t = v_t\,\mathrm{d}t$$

$$\mathrm{d}v_t = -\gamma v_t\,\mathrm{d}t - \nabla f(X_t)\,\mathrm{d}t + \underbrace{\sqrt{2}\,\mathrm{d}B_t}_{\text{stochastic term}}$$

Trade-off between computational efficiency and accuracy

Comparison to Hamiltonian MCMC

Proposed accelerated flow:

$$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \underbrace{\nabla \log(\rho_t(X_t))}_{\text{mean-field term}}$$

Continuous-time limit of Hamiltonian MCMC (under-damped Langevin eq.)

$$\mathrm{d}X_t = v_t \, \mathrm{d}t$$

$$\mathrm{d}v_t = -\gamma v_t \, \mathrm{d}t - \nabla f(X_t) \, \mathrm{d}t + \underbrace{\sqrt{2} \, \mathrm{d}B_t}_{\text{stochastic term}}$$

Trade-off between computational efficiency and accuracy

Numerical example comparison with MCMC and HMCMC

Summary

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_{\infty})$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} U_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

Future work

- \blacksquare Removing the assumption d =
- Convergence analysis of the discretized algorithm

Summary

	vector variables \mathbb{R}^d	probability distribution $\mathcal{P}_2(\mathbb{R}^d)$
Objective funct.	f(x)	$F(ho) = D(ho \ ho_\infty)$
Gradient flow	$\dot{x}_t = -\nabla f(x_t)$	$dX_t = -\nabla f(X_t) dt + \sqrt{2} dB_t$
Lagrangian	$t^{3}(\frac{1}{2} u_{t} ^{2} - f(x_{t}))$	$E[t^{3}(\frac{1}{2} U_{t} ^{2} - f(X_{t}) - \log(\rho(X_{t})))]$
Accelerated flow	$\ddot{x}_t = -\frac{3}{t}\dot{x}_t - \nabla f(x_t)$	$\ddot{X}_t = -\frac{3}{t}\dot{X}_t - \nabla f(X_t) - \nabla \log(\rho_t(X_t))$

Future work:

- \blacksquare Removing the assumption d=1
- Convergence analysis of the discretized algorithm