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Motivation and objective

m Many machine learning problems are modelled as an optimization problem on the
space of probability distributions

m Bayesian inference
m Learning generative models
m Policy optimization in reinforcement learning
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Motivation and objective

I

m Many machine learning problems are modelled as an optimization problem on the
space of probability distributions

m Bayesian inference
m Learning generative models
m Policy optimization in reinforcement learning

m Solution approaches by constructing gradient flows for probability distributions

Liu & Wang, 2016. "Stein variational gradient descent”
Zhang, et. al. 2018. "Policy optimization as wasserstein gradient flows”
Frogner & Poggio, 2018. "Approximate inference with wasserstein gradient flows

Chizat & Bach, 2018. "On the global convergence of gradient descent for
over-parameterized models using optimal transport”
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m Learning generative models
m Policy optimization in reinforcement learning

m Solution approaches by constructing gradient flows for probability distributions

Liu & Wang, 2016. "Stein variational gradient descent”
Zhang, et. al. 2018. "Policy optimization as wasserstein gradient flows”
Frogner & Poggio, 2018. "Approximate inference with wasserstein gradient flows”

Chizat & Bach, 2018. "On the global convergence of gradient descent for
over-parameterized models using optimal transport”
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m This talk: Construct accelerated gradient flows for probability distribution
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Our approach and main idea

Euclidean space Space of probability distributions
Gradient descent Wasserstein gradient flow
Accelerated methods ?

Accelerated gradient flow for prob. dist. Amirhossein Taghvaei 2 /16



Our approach and main idea

Euclidean space Space of probability distributions
Gradient descent Wasserstein gradient flow
(1)
Accelerated methods ?

(1) Variational formulation on accelerated methods in optimization (Wibisono, et. al.
2017).
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Our approach and main idea

Euclidean space Space of probability distributions

(2)
Gradient descent —— > Wasserstein gradient flow

(1)

Accelerated methods ?

(1) Variational formulation on accelerated methods in optimization (Wibisono, et. al.
2017).

(2) Riemannian geometry for probability distributions from optimal transportation
theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)
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Our approach and main idea

Euclidean space Space of probability distributions

(2)
Gradient descent —— > Wasserstein gradient flow

(1) 3)

Accelerated methods ?

(1) Variational formulation on accelerated methods in optimization (Wibisono, et. al.
2017).

(2) Riemannian geometry for probability distributions from optimal transportation
theory (Jordan, et. al. 1998) (Ambrosio, et. al. 2008)

(3) Extend (1) using (2) to formulate a variational from for probability distributions that
produces accelerated flows
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Review of variational formulation of (Wibinoso, et. al. 2016)

m Optimization problem:

min f(z) (Assume f is convex)
z€R4
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Review of variational formulation of (Wibinoso, et. al. 2016)

I

m Optimization problem:

min f(z) (Assume f is convex)
z€R4

m Gradient flow:
1

==V f(r:) = flz:)—f(@) < O(;)
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Review of variational formulation of (Wibinoso, et. al. 2016)

m Optimization problem:

min f(z) (Assume f is convex)
z€R4

m Gradient flow:

b= Vi@) = f@)-[@<0()

m Accelerated gradient flow (Su, et. al. 2014):

b= =28 -Vi@m) = f@)- @) <0()
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Review of variational formulation of (Wibinoso, et. al. 2016)

I

m Optimization problem:

min f(z) (Assume f is convex)
z€R4

m Gradient flow:

b= Vi@) = f@)-[@<0()

m Accelerated gradient flow (Su, et. al. 2014):
.. 3. _ 1
G = -8 = V(@) = fla) - f(2) <O()
m {z.} is the solution to the following variational problem (Wibinoso, et. al. 2016):
Minimize: / t3(%|ut|2 — f(ze)) dt
0

. dz .
Subject to: Ttt =u, Xo==x, To="v
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Summary

vector variables RY | probability distribution P2(R%)
Objective funct. f(z) ?
Gradient flow 2y = =V f(xy) ?
Lagrangian 3 (L ue® — f(ze)) ?
Accelerated flow | #; = —fxt Vf(z) ?
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Background: Wasserstein gradient

u Objective functional:

F:P(RY) - R
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Background: Wasserstein gradient

u Objective functional:

F:P(RY) - R

= Wasserstein gradient: Vi F(p) : R* — R? is a vector field that satisfies

CF(p0)] o = (YWF (), us2o,

for all path {p¢} s.t % + V- (ptu) =0
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Background: Wasserstein gradient

u Objective functional:

F:P(RY) - R

= Wasserstein gradient: Vi F(p) : R* — R? is a vector field that satisfies

CF(p0)] o = (YWF (), us2o,

for all path {p¢} s.t % + V- (ptu) =0

m Example:

F(p) = D(p|lpsc) (relative entropy)
= VwF(p)(z) = Vlog(p(x)) + V f(z)

where f = —log(pes)
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Background: Wasserstein gradient flow

m Optimization problem:

min F
pEP2(RY) (p)
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Background: Wasserstein gradient flow

m Optimization problem:

min F
pEP2(RY) (/))

m Wasserstein gradient flow:

0,
% =V - (p:VwF(pr))
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Background: Wasserstein gradient flow

m Optimization problem:

min F
pEP2(RY) (p)

m Wasserstein gradient flow:

9py

5 =V (Pt VwF(pt))

m Example: F(p) = D(p||pss). then (Jordan, et. al. 1998)

% =V - (peVf)+ Ap: (Fokker-Planck eq.)
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Background: Wasserstein gradient flow

m Optimization problem:

min F
pEP2(RY) (p)

m Wasserstein gradient flow:

0
D=V (pVwF(py)
m Example: F(p) = D(p||ps), then (Jordan, et. al. 1998)
% =V - (peVf)+ Ap: (Fokker-Planck eq.)

Probabilistic form:
dX, = —Vf(X;)dt +v2dB;, (Langevin sde)

in the sense that p: = Law(X%).
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Background: Wasserstein gradient flow

m Optimization problem:

min F
pEP2(RY) (p)

m Wasserstein gradient flow:

0
St =V (e VwF(p)
m Example: F(p) = D(p||pss). then (Jordan, et. al. 1998)
Bpt
e V- (ptVf)+ Ap: (Fokker-Planck eq.)

Probabilistic form:
dX, = —Vf(X;)dt +v2dB;, (Langevin sde)
in the sense that p: = Law(X%).

m The goal is to build accelerated version of this sde
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Summary

vector variables R?

probability distribution P2(R%)

Objective funct.
Gradient flow
Lagrangian

Accelerated flow

Accelerated gradient flow for prob. dist.

f(z)
&y = =V f(ze)
(5 lue® — f(1))

.f?t = —*xt Vf(l’t)

F(p) = D(pllp)
dX, = —Vf(X:)dt + V2dB;

?
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Proposed variational formulation

m Variational problem (probabilistic form):

Minimize E[/ t3(%|Ut|2—ﬁ(pt,Xt))dt
0

X

Subject to =U;, Xo~ po, Xo~qo

where p; = Law(X%).
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Proposed variational formulation

m Variational problem (probabilistic form):

Minimize E[/ t3(%|Ut|2—ﬁ(pt,Xt))dt
0

X

Subject to =U;, Xo~ po, Xo~qo
where p; = Law(X%).

m It is a mean-field optimal control problem (Bensoussan, et al. 2013, Carmona &
Delarue, 2017)
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Main result

Theorem

Consider the proposed variational problem. Then,
(Maximum principle) The optimal trajectory satisfies the second-order system:

3

XtZ—Z

X — VwF(p:)(X:), Xo~ po

where p; = Law(X4).
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Main result

I

Consider the proposed variational problem. Then,

(Maximum principle) The optimal trajectory satisfies the second-order system:

. 3.
Xe=—3Xe =~ VwF(pe)(Xt), Xo ~ po

where p; = Law(X4).

(Convergence) If the functional F is displacement convex, and the dimension d = 1.
Then

F(p) — min F(p) < ()
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Main result

I

Consider the proposed variational problem. Then,
(Maximum principle) The optimal trajectory satisfies the second-order system:

3

Xt:_Z

X — VwF(p:)(X:), Xo~ po

where p; = Law(X4).

(Convergence) If the functional F is displacement convex, and the dimension d = 1.
Then

F(pr) — minF(p) < O(3;)

We expect the dimension d = 1 assumption is not necessary
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Minimizing relative entropy

u If F(p) = D(p||poc) Where poo = € 7. Then the accelerated flow is

3

Xt:_z

X; — VF(Xs) — Viog(p:(X:), Xo ~ po

mean-field term
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Minimizing relative entropy

u If F(p) = D(p||poc) Where poo = € 7. Then the accelerated flow is

.. 3. X
X = =3 X = Vf(Xe) = Viog(p(X0)),  Xo~ po
N

mean-field term

m F(p) is displacement convex iff f(x) is convex
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Minimizing relative entropy

u If F(p) = D(p||poc) Where poo = € 7. Then the accelerated flow is

.. 3. X
X = =3 X = Vf(Xe) = Viog(p(X0)),  Xo~ po
N

mean-field term
m F(p) is displacement convex iff f(x) is convex

m If po is Gaussian, then X; is also Gaussian and the mean evolves according to the
accelerated gradient flow in Euclidean space
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Numerical algorithm

m Accelerated flow for minimizing relative entropy

.. 3 . X
X = =3 X = Vf(Xe) = Viog(p(X1)),  Xo~ po
e —

mean-field term
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Numerical algorithm

m Accelerated flow for minimizing relative entropy

. 3.
K= 25— () — Viog(n(X0), Ko~ po
N e’
mean-field term
= Realized with system of interacting particles {X;}i,

£
¢

P8 i i i iid
X;—vix) - VX)), X6 po
N —’

interaction term

Xi=-—
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Numerical algorithm

m Accelerated flow for minimizing relative entropy

. 3.
K= 25— () — Viog(n(X0), Ko~ po
N e’
mean-field term
= Realized with system of interacting particles {X;}i,

£
¢

Y i i i iid
Xi—VixH - IV, X6 po
N —’

interaction term

Xi=-—

m (parametric) Gaussian approximation
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Numerical algorithm

Accelerated flow for minimizing relative entropy

. 3.
X = =3 X = Vf(Xe) = Viog(p(X1)),  Xo~ po
N e’
mean-field term
= Realized with system of interacting particles {X;}i,

£
¢

4 iid

Xi— VX)) - IV, X§E po
N——

interaction term

Xi=-—

(parametric) Gaussian approximation

(non-parametric) Diffusion-map approximation, density estimation
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Numerical algorithm

Accelerated flow for minimizing relative entropy

. 3.
X = =3 X = Vf(Xe) = Viog(p(X1)),  Xo~ po
N e’
mean-field term
= Realized with system of interacting particles {X;}i,

£
¢

4 iid

Xi— VX)) - IV, X§E po
N——

interaction term

Xi=-—

(parametric) Gaussian approximation

(non-parametric) Diffusion-map approximation, density estimation

m Time discretization using the symplectic method
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Numerical example
Gaussian

m The target distribution is Gaussian
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Numerical example

non-Gaussian

m The target distribution is

mixture of two Gaussians

+m
X,

t=t,

t=t,

-10 0 X -10 0

Accelerated gradient flow for prob. dist.
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Comparison to Hamiltonian MCMC

m Proposed accelerated flow:

X = =2X: = V(%) - ¥ log(p (X))
N————

mean-field term
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Comparison to Hamiltonian MCMC

m Proposed accelerated flow:

.. 3.

Xe=—3X: = Vf(Xe) — Viog(p: (X))

—— —

mean-field term
m Continuous-time limit of Hamiltonian MCMC (under-damped Langevin eq.)

dXt = V¢ dt

dv; = —yve dt — VF(Xy)dt + V2dB,

———

stochastic term
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Comparison to Hamiltonian MCMC

m Proposed accelerated flow:
.. 3.
Xe=—3X: = Vf(Xe) — Viog(p: (X))
N————
mean-field term
m Continuous-time limit of Hamiltonian MCMC (under-damped Langevin eq.)
dXt = V¢ dt
dv; = —yve dt — VF(Xy)dt + V2dB,
N——

stochastic term

m Trade-off between computational efficiency and accuracy
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Numerical example
comparison with MCMC and HMCMC
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Summary

vector variables R? probability distribution P2 (R%)
Objective funct. f(x) F(p) = D(p|lpss)
Gradient flow iy = =V f(xs) dX, = —Vf(X:)dt +v2dB;
Lagrangian | £*(buel? — f(ze) | ERF(LIUL2 — £(X0) — log(p(X0)))]
Accelerated flow | & = —3i, — Vf(2) | X = —2X, — Vf(X:) — Viog(pe(Xt))
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Summary

vector variables R? probability distribution P2 (R%)
Objective funct. f(x) F(p) = D(p|lpss)
Gradient flow iy = =V f(xs) dX, = —Vf(X:)dt +v2dB;
Lagrangian | £*(buel? — f(ze) | ERF(LIUL2 — £(X0) — log(p(X0)))]
Accelerated flow | & = —3i, — Vf(2) | X = —2X, — Vf(X:) — Viog(pe(Xt))

Future work:
m Removing the assumption d =1

m Convergence analysis of the discretized algorithm
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