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Realizing probability flows
with stochastic processes

Problem: given a probability flow {p;}:>0, construct a stochastic process {X;}+>0 such
that
LBW(Xt) = D¢, Vi > 0.
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Realizing probability flows
with stochastic processes

Problem: given a probability flow {p;}:>0, construct a stochastic process {X;}+>0 such
that
LBW(Xt) = D¢, Vi > 0.

Significance:
m interacting particle sampling algorithms (e.g. SVGD)
m simulating Wasserstein gradient flows
m diffusion-based generative models

m controlled particle filtering algorithms — this talk
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Realizing probability flows
Example

m Assume p; is a one-dimensional Gaussian N (0, X;) where 3, = 1 + 2t.
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Realizing probability flows
Example

m Assume p; is a one-dimensional Gaussian N (0, X;) where 3, = 1 + 2t.

m Assume X is of the form
dX; = udt + vedBe, Xo ~ po.

m Design u¢ and v, such that Law(X;) = p; for all ¢t > 0.

m Solution:
dX; =V2dB;, Xo~ N(0,1)

= Why?

mean: %E[Xt] =0 = EXJ=EXo]=0 V
variance: iVar[X,g] =2 = Var[Xy]=Var[Xo]+2t=1+2¢t v

dt
distribution: X is Gaussian V
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Realizing probability flows
Non-uniqueness

Question: Are there any other realizations?
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= Yes,

X: — E[X4]

dX; =
‘ Var[X]

dt, Xo~ N(0,1).
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Realizing probability flows
Non-uniqueness

Question: Are there any other realizations?

= Yes,
X: — E[X4]
dX; = ————=dt, Xo~ N(0,1).
¢ Var[X¢] ’ 0 @, 2)
u Why?

o %E[Xt] —0 = E[X]=E[X)]=0 v
VarlXid _ o o Var[Xy] = Var[Xo] +2 = 1+ 2t

variance: %Var[Xt] - 2Var[Xt]

v

distribution: dX; = X g0 o X, is Gaussian v/
1+2t
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Realizing probability flows
Simulation

Question: How to simulate the two processes?

Amirhossein Taghvaei 4 /13



Realizing probability flows
Simulation

Question: How to simulate the two processes?

= Simulate N stochastic processes/particles {X;,..., X'}

Amirhossein Taghvaei 4/13



Realizing probability flows
Simulation

Question: How to simulate the two processes?

= Simulate N stochastic processes/particles {X;,..., X'}

stochastic: dX{ = V2dBi, Xi~ N(0,1)

Amirhossein Taghvaei 4/13



Realizing probability flows
Simulation

Question: How to simulate the two processes?

= Simulate N stochastic processes/particles {X;,..., X'}

stochastic: dX; = v2dB!, XéNN(O, 1)

, Xi— LN o x) ,
deterministic: dX; = imn2a X dt, X¢~ N(0,1)

¥ e (X2 - (% XL, X1
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Realizing probability flows
Questions

m Is there a principled approach to obtain these processes?
= In the mean-field limit, do they exhibit different (stability) properties?

m In finite-N setting, do they exhibit different approximation error?

10, 10
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Realizing probability flows
Questions

m Is there a principled approach to obtain these processes?
= In the mean-field limit, do they exhibit different (stability) properties?

m In finite-N setting, do they exhibit different approximation error?

10, 10

This paper: study these questions for controlled particle filtering algorithms

Amirhossein Taghvaei 5/13



Filtering problem

Model:
state process :  {X:}i>0
observation process : {Z;}:>0

posterior dist. : 7 := P(Xy|Z;) where Z;:=0(Zs;s €0,t])
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Filtering problem

Model:
state process :  {X:}i>0
observation process : {Z;}:>0
posterior dist. : 7 := P(Xy|Z;) where Z;:=0(Zs;s €0,t])
Objective: compute the posterior distribution 7.

Approach:

m realize {m;};>0 with a stochastic process {X;};>0 s:t.

Law()_(t) = T¢, Vit Z 0.

®m simulate X; as a system of N interacting particles {X;,..., X} },
1 _
ﬁ Z(SXZ ~ Law(Xt) = Tt.
=1
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Filtering problem
Linear-Gaussian setting
Model:
state process : dX; = AX;dt + opdB:
observation process : dZ; = HX:dt + owdW,

posterior dist. :  m := P(X:|Z;) where Z;:=0(Zss €0,t])
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Filtering problem
Linear-Gaussian setting

Model:
state process : dX; = AX;dt + opdB:
observation process : dZ; = HX:dt + owdW,

posterior dist. :  m := P(X:|Z;) where Z;:=0(Zss €0,t])

Kalman filter: posterior dist. 7 is Gaussian N (m¢,X+) where

dmt = Amt + Kt(dZt — Hmtdt) = ﬂ(mt, Zt)
d¥,

i 2AY; + 0% — H?S? =: Ricc(2)
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Filtering problem
Linear-Gaussian setting

Model:
state process : dX; = AX;dt + opdB:
observation process : dZ; = HX:dt + owdW,

posterior dist. :  m := P(X:|Z;) where Z;:=0(Zss €0,t])

Kalman filter: posterior dist. 7 is Gaussian N (m¢,X+) where

dmt = Amt + Kt(dZt — Hmtdt) =: ﬂ(mt, Zt)
% =2A%; + 0% — H?Y? =: Ricc(Z¢)
Ensemble Kalman filter:

m Realize 7; with a stochastic process X;.

m Simulate X; with N particles {th, e ,XtN}.
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Ensemble Kalman filter
Construction of X4

m Let Tt — N(mt, Et) where dmt = ﬁ(mt, Zt) and Et = RiCC(Et).
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Ensemble Kalman filter
Construction of X

m Let Tt — N(mt,Et) where dmt = ﬂ(mt,Zt) and Et = RiCC(Zt).

= Assume X is of the form
dXt = Utdt + UtdZt + TtdBt =+ qthVh Xo ~ 7_1'()
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Ensemble Kalman filter
Construction of X

m Let Tt — N(mt, Et) where dmt = ﬁ(mt,Zt) and Et = RiCC(Et).

m Assume X, is of the form
dX; = ugdt + v:dZ; + red By + qudWy,  Xo ~ 7o
m Find w¢, ve, 74, g¢ such that
LaW(Xt) =m, VE>0
= Solution:
dX; = Ti(me, 8¢) + Go(Xe — m)dt + red By + qdW,
where m; = E[X| 2], 8¢ = Var[X;|Z:], and (G, r, q) satisfy

2Gt2t + T't2 + qt2 = RiCC(it).
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Ensemble Kalman filter
Three established forms
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Ensemble Kalman filter
Three established forms

= EnKF with perturbed observation [Reich 2011]

P-EnKF: dX; = AX:dt + opdB; + K¢(dZ: — HX,dt — dW?)
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Ensemble Kalman filter
Three established forms

= EnKF with perturbed observation [Reich 2011]
P-EnKF: dXt = AXtdt =+ O'BdBt + Rt(dZt — HXtdt — th)
m Square-root EnKF [Bergemann & Reich 2012]

HX, + Hm,

S-EHKF: dXt = AXtdt =+ O'BdBt + Rt(dZt = B

dt)
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Ensemble Kalman filter
Three established forms

= EnKF with perturbed observation [Reich 2011]
P-EnKF: dXt = AXtdt =+ O'BdBt + Rt(dZt — HXtdt — th)

m Square-root EnKF [Bergemann & Reich 2012]

S-EnKF: dX; = AX.dt + opdB; + K(dZ; — wd@
m Deterministic EnKF [Taghvaei & Mehta 2016]
2 % _
D-EnKF: dX;= AX.dt+ %dt +Ki(dZ, — wdt)
t
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Ensemble Kalman filter
Stability with respect to error in initial condition

m By construction

Law()?t) =m, VE>0, if Law()?o) = mo.
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Stability with respect to error in initial condition

m By construction
Law(X:) =m, Vt>0, if Law(Xo) = mo.
= What if Law(Xo) # mo? Does Law(X;) — m; as t — 00?
Stability
Assume the pair (A, o) is controllable and the pair (A, H) is observable. Then,
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= What if Law(Xo) # mo? Does Law(X;) — m; as t — 00?
Stability
Assume the pair (A, o) is controllable and the pair (A, H) is observable. Then,

E[Wa (71, m)] < Ce " Wa (N (0, £0), N (mo, 50)) + e/6 G4 W, (N (o, So), 7o)

m 1st term: error in the initial mean and variance.
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Ensemble Kalman filter
Stability with respect to error in initial condition

m By construction
Law()?t) =m, VE>0, if Law()?o) = mo.
= What if Law(Xo) # mo? Does Law(X;) — m; as t — 00?
Assume the pair (A, o) is controllable and the pair (A, H) is observable. Then,
E[Wa(7e, m)] < Ce " Wh(N (0, o), N (mo, o)) + /0 S Wy (N (70, So), o)

m 1st term: error in the initial mean and variance.

m converges exponentially to zero with rate Ao > 0 for all forms of EnKF.
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Ensemble Kalman filter
Stability with respect to error in initial condition

m By construction
Law(X;) =m, Vt>0, if Law(Xo) = mo.
= What if Law(Xo) # mo? Does Law(X;) — m; as t — 00?
Stability
Assume the pair (A, o) is controllable and the pair (A, H) is observable. Then,
— t —
E[Wa (e, 1)) < Ce Wy (N (o0, £0), N (1m0, Zo)) + /0 I W, (N (1o, £o), 7o)
m 1st term: error in the initial mean and variance.

m converges exponentially to zero with rate Ao > 0 for all forms of EnKF.

m 2nd term: how "non-Gaussian” is the initial distribution
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Ensemble Kalman filter
Stability with respect to error in initial condition

m By construction
Law(X:) =m, Vt>0, if Law(Xo) = mo.
= What if Law(Xo) # mo? Does Law(X;) — m; as t — 00?
Stability
Assume the pair (A, o) is controllable and the pair (A, H) is observable. Then,
— t —
E[W2(7:, m:)] < Ce™ Wy (N (10, o), N(mo, £o)) + €0 G W, (N (imo, o), 7o)
m 1st term: error in the initial mean and variance.
m converges exponentially to zero with rate Ao > 0 for all forms of EnKF.

m 2nd term: how "non-Gaussian” is the initial distribution

m lts asymptotic behavior depends on the choice for G;.
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Ensemble Kalman filter
Stability for the three forms of EnKF

= Assuming correct initial mean and variance (so that the first term is zero):
P-EnKF: E[Wa (7, m¢)] < (const.)e™ ¢
S-EnKF: E[Ws(7s, )] < (const.)e™ " 0 < A1 < o

D-EnKF: E[Wa (7, m)] > (const.)
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Ensemble Kalman filter
Stability for the three forms of EnKF

= Assuming correct initial mean and variance (so that the first term is zero):
P-EnKF: E[Wa(7:,7:)] < (const.)e™ 0!
S-EnKF: E[Ws(7s, )] < (const.)e™ " 0 < A1 < o
D-EnKF: E[Wa (7, m)] > (const.)

m P-EnKF and S-EnKF are exponentially stable.
m convergence rate of P-EnKF is strictly larger than S-EnKF.

m D-EnKF is marginally stable. If the initial distribution is non-Gaussian, it remains
non-Gaussian.
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Ensemble Kalman filter
Finite-N error analysis

m system of interacting particles:

dx; = Ti(m™, ) + Gu(Xi — m{™)dt + rid Bl + qdW;
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Ensemble Kalman filter
Finite- N error analysis

m system of interacting particles:
dx; = Ti(m™, ") + Go(X] — m{™)dt + r.dB; + q:dW;

m objective: analyze the empirical approximation error

1 N

_ N

wtzwg ):NE 6Xt1
=1
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Ensemble Kalman filter
Finite-N error analysis

m system of interacting particles:
dx; = Ti(m™, ") + Go(X] — m{™)dt + r.dB; + q:dW;

m objective: analyze the empirical approximation error

1 N

_ N

Wtzﬂ'g ):ﬁg 6X§
=1

Error analysis for empirical variance

Assume sup E[(r; 4 ¢7)¢] = M < oco. Then, the error in empirical variance
t>0

. M
Jlim E[(=™) — 5,)?] < (const.) 5~
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Ensemble Kalman filter
Finite-N error analysis

m system of interacting particles:
dx; = Ti(m™, ") + Go(X] — m{™)dt + r.dB; + q:dW;

m objective: analyze the empirical approximation error

1 N

_ N

Wt%ﬂ'g ):ﬁg 6th
=1

Error analysis for empirical variance

Assume sup E[(r; 4 ¢7)¢] = M < oco. Then, the error in empirical variance
>0

. M
lim E[(=™) — 5,)?] < (const.) 5~

m Error is due to stochastic terms in the dynamics

P-EnKF: M x o5 + H?, S-EnKF: M xop, D-EnKF: M =0
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Summary and conclusions

m General form of EnKF:

dX: = Te(ma, ) + Ge( Xy — me)dt + red By + q:dW;
st. 2G:3: + ’r'tz +q— — Ricc(it)
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Summary and conclusions

m General form of EnKF:

dX, = Te (M, i3t) + Gt(Xt — mye)dt + redB; + q.dW;
st. 2G:3: + rtz +q— — Ricc(f}t)

m Analysis for three established forms:

Algorithm Gt Tt qt Stability rate finite-IN error
P-EnKF A—-S.H? op | L:H Ao x N~ Yo% + H?)
S-EnKF A— %ZHZ o | O # x N 'o}
D-EnKF | A—S.H” + ;—é 0 0 0 0
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Summary and conclusions

m General form of EnKF:
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m Analysis for three established forms:

Algorithm Gt Tt qt Stability rate finite-IN error
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m a trade-off between stability and finite-N error
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Summary and conclusions

m General form of EnKF:

dX; = Te(me, 8¢) + Ge(Xe — me)dt + red By + qedW,
st. 2G:3: + rtz +q— — Ricc(f}t)

m Analysis for three established forms:

Algorithm Gt Tt qt Stability rate finite-IN error
P-EnKF A—-S.H? op | L:H Ao x N~ Yo% + H?)
S-EnKF A— %ZHQ o | O # x N 'o}
D-EnKF | A—S.H? + ;—é 0 0 0 0

m a trade-off between stability and finite-N error

m Is this fundamental? Are there design principles that take this into consideration?
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