Optimality vs Stability Trade-off in Ensemble Kalman Filters

Presented at International Symposium on Mathematical Theory of Networks and Systems Bayeruth, Germany

Amirhossein Taghvaei†

Joint work with Prashant Mehta* and Tryphon Georgiou+

†University of Washington, Seattle *University of Illinois at Urbana-Champaign +University of California, Irvine

Sep 15, 2022

with stochastic processes

Problem: given a probability flow $\{p_t\}_{t\geq 0}$, construct a stochastic process $\{X_t\}_{t\geq 0}$ such that

$$\mathsf{Law}(X_t) = p_t, \quad \forall t \ge 0.$$

Significance

- interacting particle sampling algorithms (e.g. SVGD)
- simulating Wasserstein gradient flows
- diffusion-based generative models
- \blacksquare controlled particle filtering algorithms \rightarrow this talk

with stochastic processes

Problem: given a probability flow $\{p_t\}_{t\geq 0}$, construct a stochastic process $\{X_t\}_{t\geq 0}$ such that

$$\mathsf{Law}(X_t) = p_t, \quad \forall t \ge 0.$$

Significance:

- interacting particle sampling algorithms (e.g. SVGD)
- simulating Wasserstein gradient flows
- diffusion-based generative models
- controlled particle filtering algorithms → this talk

- Assume p_t is a one-dimensional Gaussian $N(0, \Sigma_t)$ where $\Sigma_t = 1 + 2t$.
- Assume X_t is of the form

$$dX_t = u_t dt + v_t dB_t, \quad X_0 \sim p_0.$$

- Design u_t and v_t such that $Law(X_t) = p_t$ for all $t \ge 0$.
- Solution:

$$dX_t = \sqrt{2}dB_t, \quad X_0 \sim N(0, 1)$$

■ Why?

mean:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t] = 0 \quad \Rightarrow \quad \mathbb{E}[X_t] = \mathbb{E}[X_0] = 0 \quad \checkmark$$
 variance:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Var}[X_t] = 2 \quad \Rightarrow \quad \mathrm{Var}[X_t] = \mathrm{Var}[X_0] + 2t = 1 + 2t \quad \checkmark$$

- Assume p_t is a one-dimensional Gaussian $N(0, \Sigma_t)$ where $\Sigma_t = 1 + 2t$.
- \blacksquare Assume X_t is of the form

$$dX_t = u_t dt + v_t dB_t, \quad X_0 \sim p_0.$$

- Design u_t and v_t such that $\mathsf{Law}(X_t) = p_t$ for all $t \geq 0$
- Solution

$$dX_t = \sqrt{2}dB_t, \quad X_0 \sim N(0, 1)$$

Why?

mean:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t] = 0 \quad \Rightarrow \quad \mathbb{E}[X_t] = \mathbb{E}[X_0] = 0 \quad \checkmark$$
 variance:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Var}[X_t] = 2 \quad \Rightarrow \quad \mathsf{Var}[X_t] = \mathsf{Var}[X_0] + 2t = 1 + 2t \quad \checkmark$$

- Assume p_t is a one-dimensional Gaussian $N(0, \Sigma_t)$ where $\Sigma_t = 1 + 2t$.
- \blacksquare Assume X_t is of the form

$$dX_t = u_t dt + v_t dB_t, \quad X_0 \sim p_0.$$

- Design u_t and v_t such that $\mathsf{Law}(X_t) = p_t$ for all $t \ge 0$.
- Solution:

$$dX_t = \sqrt{2}dB_t, \quad X_0 \sim N(0, 1)$$

Why?

- Assume p_t is a one-dimensional Gaussian $N(0, \Sigma_t)$ where $\Sigma_t = 1 + 2t$.
- \blacksquare Assume X_t is of the form

$$dX_t = u_t dt + v_t dB_t, \quad X_0 \sim p_0.$$

- Design u_t and v_t such that $\mathsf{Law}(X_t) = p_t$ for all $t \ge 0$.
- Solution:

$$dX_t = \sqrt{2}dB_t, \quad X_0 \sim N(0, 1)$$

Why?

$$\begin{array}{lll} \text{mean:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t] = 0 & \Rightarrow & \mathbb{E}[X_t] = \mathbb{E}[X_0] = 0 & \checkmark \\ \text{variance:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Var}[X_t] = 2 & \Rightarrow & \mathsf{Var}[X_t] = \mathsf{Var}[X_0] + 2t = 1 + 2t & \checkmark \end{array}$$

- Assume p_t is a one-dimensional Gaussian $N(0, \Sigma_t)$ where $\Sigma_t = 1 + 2t$.
- \blacksquare Assume X_t is of the form

$$dX_t = u_t dt + v_t dB_t, \quad X_0 \sim p_0.$$

- Design u_t and v_t such that $\mathsf{Law}(X_t) = p_t$ for all $t \ge 0$.
- Solution:

$$dX_t = \sqrt{2}dB_t, \quad X_0 \sim N(0, 1)$$

■ Why?

$$\begin{array}{ll} \text{mean:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t]=0 \quad \Rightarrow \quad \mathbb{E}[X_t]=\mathbb{E}[X_0]=0 \quad \checkmark \\ \\ \text{variance:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Var}[X_t]=2 \quad \Rightarrow \quad \mathsf{Var}[X_t]=\mathsf{Var}[X_0]+2t=1+2t \quad \checkmark \end{array}$$

Non-uniqueness

Question: Are there any other realizations?

Yes,

$$dX_t = \frac{X_t - \mathbb{E}[X_t]}{\mathsf{Var}[X_t]} dt, \quad X_0 \sim N(0, 1).$$

Why?

mean:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t] = 0 \quad \Rightarrow \quad \mathbb{E}[X_t] = \mathbb{E}[X_0] = 0 \quad \checkmark$$

variance:
$$\frac{\mathrm{d}}{\mathrm{d}t} \mathsf{Var}[X_t] = 2 \frac{\mathsf{Var}[X_t]}{\mathsf{Var}[X_t]} = 2 \quad \Rightarrow \quad \mathsf{Var}[X_t] = \mathsf{Var}[X_0] + 2 = 1 + 2t$$

distribution:
$$dX_t = \frac{X_t}{1+2t}dt \Rightarrow X_t$$
 is Gaussian v

Non-uniqueness

Question: Are there any other realizations?

Yes,

$$dX_t = \frac{X_t - \mathbb{E}[X_t]}{\mathsf{Var}[X_t]} dt, \quad X_0 \sim N(0, 1).$$

Why?

mean:
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t] = 0 \quad \Rightarrow \quad \mathbb{E}[X_t] = \mathbb{E}[X_0] = 0 \quad \checkmark$$
variance: $\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Var}[X_t] = 2\frac{\mathsf{Var}[X_t]}{\mathsf{Var}[X_t]} = 2 \quad \Rightarrow \quad \mathsf{Var}[X_t] = \mathsf{Var}[X_0] + 2 = 1 + 2t \quad \checkmark$
stribution: $\mathrm{d}X_t = \frac{X_t}{1+t^2}\mathrm{d}t \quad \Rightarrow \quad X_t \text{ is Gaussian} \quad \checkmark$

Non-uniqueness

Question: Are there any other realizations?

Yes,

$$dX_t = \frac{X_t - \mathbb{E}[X_t]}{\mathsf{Var}[X_t]} dt, \quad X_0 \sim N(0, 1).$$

■ Why?

$$\begin{array}{lll} \text{mean:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X_t]=0 & \Rightarrow & \mathbb{E}[X_t]=\mathbb{E}[X_0]=0 \quad \checkmark \\ \\ \text{variance:} & \frac{\mathrm{d}}{\mathrm{d}t}\mathsf{Var}[X_t]=2\frac{\mathsf{Var}[X_t]}{\mathsf{Var}[X_t]}=2 & \Rightarrow & \mathsf{Var}[X_t]=\mathsf{Var}[X_0]+2=1+2t \quad \checkmark \\ \\ \text{distribution:} & \mathrm{d}X_t=\frac{X_t}{1+2t}\mathrm{d}t & \Rightarrow & X_t \text{ is Gaussian} \quad \checkmark \end{array}$$

Question: How to simulate the two processes?

Question: How to simulate the two processes?

stochastic:
$$\mathrm{d}X_t^i = \sqrt{2}\mathrm{d}B_t^i, \quad X_0^i \sim N(0,1)$$

$$\begin{aligned} \text{deterministic:} \quad \mathrm{d} X_t^i &= \frac{X_t^i - \frac{1}{N} \sum_{j=1}^N X_t^j}{\frac{1}{N} \sum_{j=1}^N (X_t^j)^2 - (\frac{1}{N} \sum_{j=1}^N X_t^j)^2} \mathrm{d} t, \quad X_0^i \sim N(0,1) \end{aligned}$$

Question: How to simulate the two processes?

stochastic:
$$dX_t^i = \sqrt{2}dB_t^i$$
, $X_0^i \sim N(0,1)$

$$\text{deterministic:} \quad \mathrm{d} X_t^i = \frac{X_t^i - \frac{1}{N} \sum_{j=1}^N X_t^j}{\frac{1}{N} \sum_{j=1}^N (X_t^j)^2 - (\frac{1}{N} \sum_{j=1}^N X_t^j)^2} \mathrm{d} t, \quad X_0^i \sim N(0, 1)$$

Question: How to simulate the two processes?

stochastic:
$$dX_t^i = \sqrt{2}dB_t^i$$
, $X_0^i \sim N(0,1)$

$$\begin{aligned} \text{deterministic:} \quad \mathrm{d} X_t^i &= \frac{X_t^i - \frac{1}{N} \sum_{j=1}^N X_t^j}{\frac{1}{N} \sum_{j=1}^N (X_t^j)^2 - (\frac{1}{N} \sum_{j=1}^N X_t^j)^2} \mathrm{d} t, \quad X_0^i \sim N(0,1) \end{aligned}$$

Realizing probability flows Questions

- Is there a principled approach to obtain these processes?
- In the mean-field limit, do they exhibit different (stability) properties?
- In finite-N setting, do they exhibit different approximation error?

This paper: study these questions for controlled particle filtering algorithms

Realizing probability flows Questions

- Is there a principled approach to obtain these processes?
- In the mean-field limit, do they exhibit different (stability) properties?
- In finite-N setting, do they exhibit different approximation error?

This paper: study these questions for controlled particle filtering algorithms

Model:

state process : $\{X_t\}_{t\geq 0}$

observation process : $\{Z_t\}_{t\geq 0}$

posterior dist. : $\pi_t := \mathbb{P}(X_t | \mathcal{Z}_t)$ where $\mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$

Objective: compute the posterior distribution π_t

Approach:

■ realize $\{\pi_t\}_{t\geq 0}$ with a stochastic process $\{\bar{X}_t\}_{t\geq 0}$ s.t.

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0.$$

lacksquare simulate $ar{X}_t$ as a system of N interacting particles $\{ar{X}_t^1,\dots,ar{X}_t^N\}_t$

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{\bar{X}_{t}^{i}} \approx \text{Law}(\bar{X}_{t}) = \pi_{t}$$

Model:

state process : $\{X_t\}_{t\geq 0}$

observation process : $\{Z_t\}_{t\geq 0}$

posterior dist. : $\pi_t := \mathbb{P}(X_t | \mathcal{Z}_t)$ where $\mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$

Objective: compute the posterior distribution π_t .

Approach:

■ realize $\{\pi_t\}_{t\geq 0}$ with a stochastic process $\{\bar{X}_t\}_{t\geq 0}$ s.t.

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0.$$

 \blacksquare simulate \bar{X}_t as a system of N interacting particles $\{\bar{X}_t^1,\ldots,\bar{X}_t^N\}$,

$$\frac{1}{N} \sum_{i=1}^{N} \delta_{\bar{X}_{t}^{i}} \approx \text{Law}(\bar{X}_{t}) = \pi_{t}$$

Model:

state process : $\{X_t\}_{t\geq 0}$

observation process : $\{Z_t\}_{t\geq 0}$

posterior dist. : $\pi_t := \mathbb{P}(X_t | \mathcal{Z}_t)$ where $\mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$

Objective: compute the posterior distribution π_t .

Approach:

■ realize $\{\pi_t\}_{t\geq 0}$ with a stochastic process $\{\bar{X}_t\}_{t\geq 0}$ s.t.

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0.$$

lacksquare simulate $ar{X}_t$ as a system of N interacting particles $\{ar{X}_t^1,\dots,ar{X}_t^N\}$,

$$rac{1}{N}\sum_{i=1}^N \delta_{ar{X}_t^i} pprox \mathsf{Law}(ar{X}_t) = \pi_t.$$

Filtering problem Linear-Gaussian setting

Model:

state process: $dX_t = AX_tdt + \sigma_BdB_t$

observation process: $dZ_t = HX_t dt + \sigma_W dW_t$

posterior dist. : $\pi_t := \mathbb{P}(X_t | \mathcal{Z}_t)$ where $\mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$

Kalman filter: posterior dist. π_t is Gaussian $N(m_t, \Sigma_t)$ where

$$dm_t = Am_t + \mathsf{K}_t(dZ_t - Hm_t dt) =: \mathcal{T}_t(m_t, \Sigma_t)$$

$$\frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} = 2A\Sigma_t + \sigma_B^2 - H^2\Sigma_t^2 =: \mathrm{Ricc}(\Sigma_t)$$

Ensemble Kalman filter

- Realize π_t with a stochastic process \bar{X}_t
- Simulate \bar{X}_t with N particles $\{X_t^1, \dots, X_t^N\}$.

Linear-Gaussian setting

Model:

state process: $dX_t = AX_t dt + \sigma_B dB_t$

observation process: $dZ_t = HX_t dt + \sigma_W dW_t$

posterior dist. : $\pi_t := \mathbb{P}(X_t | \mathcal{Z}_t)$ where $\mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$

Kalman filter: posterior dist. π_t is Gaussian $N(m_t, \Sigma_t)$ where

$$dm_t = Am_t + \mathsf{K}_t(dZ_t - Hm_t dt) =: \mathcal{T}_t(m_t, \Sigma_t)$$

$$\frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} = 2A\Sigma_t + \sigma_B^2 - H^2\Sigma_t^2 =: \mathrm{Ricc}(\Sigma_t)$$

Ensemble Kalman filter

- Realize π_t with a stochastic process \bar{X}_t
- Simulate \bar{X}_t with N particles $\{X_t^1, \dots, X_t^N\}$.

Linear-Gaussian setting

Model:

state process:
$$dX_t = AX_tdt + \sigma_BdB_t$$

observation process:
$$dZ_t = HX_t dt + \sigma_W dW_t$$

$$\textbf{posterior dist.}: \quad \pi_t := \mathbb{P}(X_t | \mathcal{Z}_t) \quad \text{where} \quad \mathcal{Z}_t := \sigma(Z_s; s \in [0, t])$$

Kalman filter: posterior dist. π_t is Gaussian $N(m_t, \Sigma_t)$ where

$$dm_t = Am_t + \mathsf{K}_t(dZ_t - Hm_t dt) =: \mathcal{T}_t(m_t, \Sigma_t)$$

$$\frac{\mathrm{d}\Sigma_t}{\mathrm{d}t} = 2A\Sigma_t + \sigma_B^2 - H^2\Sigma_t^2 =: \mathrm{Ricc}(\Sigma_t)$$

Ensemble Kalman filter:

- Realize π_t with a stochastic process \bar{X}_t .
- Simulate \bar{X}_t with N particles $\{X_t^1, \dots, X_t^N\}$.

Construction of \bar{X}_t

- Let $\pi_t = N(m_t, \Sigma_t)$ where $dm_t = \mathcal{T}_t(m_t, \Sigma_t)$ and $\dot{\Sigma}_t = \text{Ricc}(\Sigma_t)$.
- Assume \bar{X}_t is of the form

$$d\bar{X}_t = u_t dt + v_t dZ_t + r_t d\bar{B}_t + q_t d\bar{W}_t, \quad \bar{X}_0 \sim \bar{\pi}_0$$

Find u_t, v_t, r_t, q_t such that

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0$$

Solution

$$\mathrm{d}\bar{X}_t = \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t)\mathrm{d}t + r_t\mathrm{d}\bar{B}_t + q_t\mathrm{d}\bar{W}$$
 where $\bar{m}_t = \mathbb{E}[\bar{X}_t|\mathcal{Z}_t], \; \bar{\Sigma}_t = \mathrm{Var}[\bar{X}_t|\mathcal{Z}_t], \; \mathrm{and} \; (G, r, q) \; \mathrm{satisfy}$
$$2G_t\bar{\Sigma}_t + r_t^2 + q_t^2 = \mathrm{Ricc}(\bar{\Sigma}_t).$$

Construction of \bar{X}_t

- Let $\pi_t = N(m_t, \Sigma_t)$ where $dm_t = \mathcal{T}_t(m_t, \Sigma_t)$ and $\dot{\Sigma}_t = \text{Ricc}(\Sigma_t)$.
- lacksquare Assume $ar{X}_t$ is of the form

$$d\bar{X}_t = u_t dt + v_t dZ_t + r_t d\bar{B}_t + q_t d\bar{W}_t, \quad \bar{X}_0 \sim \bar{\pi}_0$$

Find u_t, v_t, r_t, q_t such that

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0$$

Solution

$$\mathrm{d}\bar{X}_t = \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t)\mathrm{d}t + r_t\mathrm{d}\bar{B}_t + q_t\mathrm{d}\bar{W}$$
 where $\bar{m}_t = \mathbb{E}[\bar{X}_t|\mathcal{Z}_t]$, $\bar{\Sigma}_t = \mathrm{Var}[\bar{X}_t|\mathcal{Z}_t]$, and (G, r, q) satisfy
$$2G_t\bar{\Sigma}_t + r_t^2 + q_t^2 = \mathrm{Ricc}(\bar{\Sigma}_t).$$

Construction of \bar{X}_t

- Let $\pi_t = N(m_t, \Sigma_t)$ where $dm_t = \mathcal{T}_t(m_t, \Sigma_t)$ and $\dot{\Sigma}_t = \text{Ricc}(\Sigma_t)$.
- lacksquare Assume \bar{X}_t is of the form

$$d\bar{X}_t = u_t dt + v_t dZ_t + r_t d\bar{B}_t + q_t d\bar{W}_t, \quad \bar{X}_0 \sim \bar{\pi}_0$$

Find u_t, v_t, r_t, q_t such that

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0$$

Solution

$$\mathrm{d}\bar{X}_t = \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t)\mathrm{d}t + r_t\mathrm{d}\bar{B}_t + q_t\mathrm{d}\bar{W}_t$$
 where $\bar{m}_t = \mathbb{E}[\bar{X}_t|\mathcal{Z}_t]$, $\bar{\Sigma}_t = \mathsf{Var}[\bar{X}_t|\mathcal{Z}_t]$, and (G, r, q) satisfy
$$2G_t\bar{\Sigma}_t + r_t^2 + q_t^2 = \mathsf{Ricc}(\bar{\Sigma}_t).$$

Construction of \bar{X}_t

- Let $\pi_t = N(m_t, \Sigma_t)$ where $dm_t = \mathcal{T}_t(m_t, \Sigma_t)$ and $\dot{\Sigma}_t = \text{Ricc}(\Sigma_t)$.
- lacksquare Assume \bar{X}_t is of the form

$$d\bar{X}_t = u_t dt + v_t dZ_t + r_t d\bar{B}_t + q_t d\bar{W}_t, \quad \bar{X}_0 \sim \bar{\pi}_0$$

Find u_t, v_t, r_t, q_t such that

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \ge 0$$

Solution:

$$\mathrm{d}\bar{X}_t = \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t)\mathrm{d}t + r_t\mathrm{d}\bar{B}_t + q_t\mathrm{d}\bar{W}_t$$
 where $\bar{m}_t = \mathbb{E}[\bar{X}_t|\mathcal{Z}_t]$, $\bar{\Sigma}_t = \mathrm{Var}[\bar{X}_t|\mathcal{Z}_t]$, and (G, r, q) satisfy
$$2G_t\bar{\Sigma}_t + r_t^2 + q_t^2 = \mathrm{Ricc}(\bar{\Sigma}_t).$$

Three established forms

■ EnKF with perturbed observation [Reich 2011]

P-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - H\bar{X}_t dt - d\bar{W}_t)$$

Square-root EnKF [Bergemann & Reich 2012]

S-EnKF:
$$\mathrm{d}ar{X}_t = Aar{X}_t\mathrm{d}t + \sigma_B\mathrm{d}ar{B}_t + ar{\mathsf{K}}_t(\mathrm{d}Z_t - rac{HX_t + Har{m}_t}{2}\mathrm{d}t)$$

Deterministic EnKF [Taghvaei & Mehta 2016]

D-EnKF:
$$\mathrm{d}\bar{X}_t = A\bar{X}_t\mathrm{d}t + \frac{\sigma_B^2}{2\bar{\Sigma}_t}\mathrm{d}t + \bar{\mathsf{K}}_t(\mathrm{d}Z_t - \frac{H\bar{X}_t + H\bar{m}_t}{2}\mathrm{d}t)$$

Three established forms

■ EnKF with perturbed observation [Reich 2011]

P-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - H\bar{X}_t dt - d\bar{W}_t)$$

Square-root EnKF [Bergemann & Reich 2012]

S-EnKF:
$$\mathrm{d}ar{X}_t = Aar{X}_t\mathrm{d}t + \sigma_B\mathrm{d}ar{B}_t + ar{\mathsf{K}}_t(\mathrm{d}Z_t - rac{HX_t + Har{m}_t}{2}\mathrm{d}t)$$

Deterministic EnKF [Taghvaei & Mehta 2016]

D-EnKF:
$$\mathrm{d}\bar{X}_t = A\bar{X}_t\mathrm{d}t + \frac{\sigma_B^2}{2\bar{\Sigma}_t}\mathrm{d}t + \bar{\mathsf{K}}_t(\mathrm{d}Z_t - \frac{H\bar{X}_t + H\bar{m}_t}{2}\mathrm{d}t)$$

Three established forms

EnKF with perturbed observation [Reich 2011]

P-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - H\bar{X}_t dt - d\bar{W}_t)$$

Square-root EnKF [Bergemann & Reich 2012]

S-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - \frac{HX_t + H\bar{m}_t}{2} dt)$$

Deterministic EnKF [Taghvaei & Mehta 2016]

D-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \frac{\sigma_B^2}{2\bar{\Sigma}_t} dt + \bar{K}_t (dZ_t - \frac{H\bar{X}_t + H\bar{m}_t}{2} dt)$$

Three established forms

■ EnKF with perturbed observation [Reich 2011]

P-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - H\bar{X}_t dt - d\bar{W}_t)$$

Square-root EnKF [Bergemann & Reich 2012]

S-EnKF:
$$d\bar{X}_t = A\bar{X}_t dt + \sigma_B d\bar{B}_t + \bar{K}_t (dZ_t - \frac{HX_t + H\bar{m}_t}{2} dt)$$

Deterministic EnKF [Taghvaei & Mehta 2016]

$$\textbf{D-EnKF:} \quad \mathrm{d}\bar{X}_t = A\bar{X}_t \mathrm{d}t + \frac{\sigma_B^2}{2\bar{\Sigma}_t} \mathrm{d}t + \bar{\mathsf{K}}_t (\mathrm{d}Z_t - \frac{H\bar{X}_t + H\bar{m}_t}{2} \mathrm{d}t)$$

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \mathsf{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

What if Law $(\bar{X}_0) \neq \pi_0$? Does Law $(\bar{X}_t) \to \pi_t$ as $t \to \infty$?

Stability

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \mathsf{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law $(\bar{X}_0) \neq \pi_0$? Does Law $(\bar{X}_t) \to \pi_t$ as $t \to \infty$?

Stability

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \text{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law $(\bar{X}_0) \neq \pi_0$? Does Law $(\bar{X}_t) \to \pi_t$ as $t \to \infty$?

Stability

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t}\mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \mathsf{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law(\bar{X}_0) $\neq \pi_0$? Does Law(\bar{X}_t) $\rightarrow \pi_t$ as $t \rightarrow \infty$?

Stability

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t}\mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

- 1st term: error in the initial mean and variance.
- converges exponentially to zero with rate $\lambda_0 > 0$ for all forms of EnKF
- 2nd term: how "non-Gaussian" is the initial distribution
- \blacksquare Its asymptotic behavior depends on the choice for G_t

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \mathsf{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law $(\bar{X}_0) \neq \pi_0$? Does Law $(\bar{X}_t) \to \pi_t$ as $t \to \infty$?

Stability

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t}\mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

- 1st term: error in the initial mean and variance.
- converges exponentially to zero with rate $\lambda_0 > 0$ for all forms of EnKF.
- 2nd term: how "non-Gaussian" is the initial distribution
- Its asymptotic behavior depends on the choice for G_t

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \mathsf{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law(\bar{X}_0) $\neq \pi_0$? Does Law(\bar{X}_t) $\rightarrow \pi_t$ as $t \rightarrow \infty$?

Stability

Assume the pair (A, σ_B) is controllable and the pair (A, H) is observable. Then,

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t}\mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

- 1st term: error in the initial mean and variance.
- converges exponentially to zero with rate $\lambda_0 > 0$ for all forms of EnKF.
- 2nd term: how "non-Gaussian" is the initial distribution
- \blacksquare Its asymptotic behavior depends on the choice for G_t

Stability with respect to error in initial condition

By construction

$$\mathsf{Law}(\bar{X}_t) = \pi_t, \quad \forall t \geq 0, \quad \text{if} \quad \mathsf{Law}(\bar{X}_0) = \pi_0.$$

■ What if Law(\bar{X}_0) $\neq \pi_0$? Does Law(\bar{X}_t) $\rightarrow \pi_t$ as $t \rightarrow \infty$?

Stability

Assume the pair (A, σ_B) is controllable and the pair (A, H) is observable. Then,

$$\mathbb{E}[\mathcal{W}_{2}(\bar{\pi}_{t}, \pi_{t})] \leq Ce^{-\lambda_{0}t}\mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), N(m_{0}, \Sigma_{0})) + e^{\int_{0}^{t} G_{s} ds} \mathcal{W}_{2}(N(\bar{m}_{0}, \bar{\Sigma}_{0}), \bar{\pi}_{0})$$

- 1st term: error in the initial mean and variance.
- converges exponentially to zero with rate $\lambda_0 > 0$ for all forms of EnKF.
- 2nd term: how "non-Gaussian" is the initial distribution
- Its asymptotic behavior depends on the choice for G_t .

Stability for the three forms of EnKF

P-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_0 t}$$

S-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_1 t}$$
 $0 < \lambda_1 < \lambda_0$

D-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \geq (\text{const.})$$

- P-EnKF and S-EnKF are exponentially stable
- convergence rate of P-EnKF is strictly larger than S-EnKF.
- D-EnKF is marginally stable. If the initial distribution is non-Gaussian, it remains non-Gaussian.

Stability for the three forms of EnKF

P-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_0 t}$$

S-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_1 t}$$
 $0 < \lambda_1 < \lambda_0$

D-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \geq (\text{const.})$$

- P-EnKF and S-EnKF are exponentially stable.
- convergence rate of P-EnKF is strictly larger than S-EnKF.
- D-EnKF is marginally stable. If the initial distribution is non-Gaussian, it remains non-Gaussian.

Stability for the three forms of EnKF

P-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_0 t}$$

S-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_1 t}$$
 $0 < \lambda_1 < \lambda_0$

D-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \geq (\text{const.})$$

- P-EnKF and S-EnKF are exponentially stable.
- convergence rate of P-EnKF is strictly larger than S-EnKF.
- D-EnKF is marginally stable. If the initial distribution is non-Gaussian, it remains non-Gaussian.

Stability for the three forms of EnKF

P-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_0 t}$$

S-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \leq (\text{const.})e^{-\lambda_1 t}$$
 $0 < \lambda_1 < \lambda_0$

D-EnKF:
$$\mathbb{E}[\mathcal{W}_2(\bar{\pi}_t, \pi_t)] \geq (\text{const.})$$

- P-EnKF and S-EnKF are exponentially stable.
- convergence rate of P-EnKF is strictly larger than S-EnKF.
- D-EnKF is marginally stable. If the initial distribution is non-Gaussian, it remains non-Gaussian.

Finite-N error analysis

system of interacting particles:

$$dX_{t}^{i} = \mathcal{T}_{t}(m_{t}^{(N)}, \Sigma_{t}^{(N)}) + G_{t}(X_{t}^{i} - m_{t}^{(N)})dt + r_{t}dB_{t}^{i} + q_{t}dW_{t}^{i}$$

objective: analyze the empirical approximation error

$$\bar{\pi}_t \approx \pi_t^{(N)} := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

Error analysis for empirical variance

Assume $\sup_{t\geq 0}\mathbb{E}[(r_t^2+q_t^2)\bar{\Sigma}_t]=M<\infty.$ Then, the error in empirical variance

$$\lim_{t \to \infty} \mathbb{E}[(\Sigma_t^{(N)} - \Sigma_t)^2] \le (\text{const.}) \frac{M}{N}$$

Error is due to stochastic terms in the dynamics

P-EnKF:
$$M \propto \sigma_P^2 + H^2$$
. S-EnKF: $M \propto \sigma_P^2$. D-EnKF: $M = 0$

Finite-N error analysis

system of interacting particles:

$$dX_{t}^{i} = \mathcal{T}_{t}(m_{t}^{(N)}, \Sigma_{t}^{(N)}) + G_{t}(X_{t}^{i} - m_{t}^{(N)})dt + r_{t}dB_{t}^{i} + q_{t}dW_{t}^{i}$$

objective: analyze the empirical approximation error

$$\bar{\pi}_t \approx \pi_t^{(N)} := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

Error analysis for empirical variance

Assume $\sup_{t\geq 0}\mathbb{E}[(r_t^2+q_t^2)\bar{\Sigma}_t]=M<\infty.$ Then, the error in empirical variance

$$\lim_{t \to \infty} \mathbb{E}[(\Sigma_t^{(N)} - \Sigma_t)^2] \le (\text{const.}) \frac{M}{N}$$

Error is due to stochastic terms in the dynamics

P-EnKF:
$$M \propto \sigma_P^2 + H^2$$
. S-EnKF: $M \propto \sigma_P^2$. D-EnKF: $M = 0$

Finite-N error analysis

system of interacting particles:

$$dX_{t}^{i} = \mathcal{T}_{t}(m_{t}^{(N)}, \Sigma_{t}^{(N)}) + G_{t}(X_{t}^{i} - m_{t}^{(N)})dt + r_{t}dB_{t}^{i} + q_{t}dW_{t}^{i}$$

objective: analyze the empirical approximation error

$$\bar{\pi}_t \approx \pi_t^{(N)} := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

Error analysis for empirical variance

Assume $\sup_{t\geq 0}\mathbb{E}[(r_t^2+q_t^2)\bar{\Sigma}_t]=M<\infty.$ Then, the error in empirical variance

$$\lim_{t \to \infty} \mathbb{E}[(\Sigma_t^{(N)} - \Sigma_t)^2] \le (\text{const.}) \frac{M}{N}$$

Error is due to stochastic terms in the dynamics

P-EnKF:
$$M \propto \sigma_P^2 + H^2$$
. S-EnKF: $M \propto \sigma_P^2$. D-EnKF: $M = 0$

Finite-N error analysis

system of interacting particles:

$$dX_{t}^{i} = \mathcal{T}_{t}(m_{t}^{(N)}, \Sigma_{t}^{(N)}) + G_{t}(X_{t}^{i} - m_{t}^{(N)})dt + r_{t}dB_{t}^{i} + q_{t}dW_{t}^{i}$$

objective: analyze the empirical approximation error

$$\bar{\pi}_t \approx \pi_t^{(N)} := \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

Error analysis for empirical variance

Assume $\sup_{t>0}\mathbb{E}[(r_t^2+q_t^2)\bar{\Sigma}_t]=M<\infty.$ Then, the error in empirical variance

$$\lim_{t \to \infty} \mathbb{E}[(\Sigma_t^{(N)} - \Sigma_t)^2] \le (\text{const.}) \frac{M}{N}$$

■ Error is due to stochastic terms in the dynamics

P-EnKF:
$$M \propto \sigma_B^2 + H^2$$
, S-EnKF: $M \propto \sigma_B^2$, D-EnKF: $M = 0$

Amirhossein Taghvaei

General form of EnKF:

$$\begin{split} \mathrm{d}\bar{X}_t &= \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t) \mathrm{d}t + r_t \mathrm{d}\bar{B}_t + q_t \mathrm{d}\bar{W}_t \\ \mathrm{s.t.} \quad 2G_t \bar{\Sigma}_t + r_t^2 + q - t^2 &= \mathrm{Ricc}(\bar{\Sigma}_t) \end{split}$$

		Stability rate	finite- N error
$A - \frac{1}{2}\bar{\Sigma}_t H^2$			

- \blacksquare a trade-off between stability and finite-N error
- Is this fundamental? Are there design principles that take this into consideration?

General form of EnKF:

$$\begin{split} \mathrm{d}\bar{X}_t &= \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t) \mathrm{d}t + r_t \mathrm{d}\bar{B}_t + q_t \mathrm{d}\bar{W}_t \\ \mathrm{s.t.} \quad 2G_t \bar{\Sigma}_t + r_t^2 + q - t^2 &= \mathrm{Ricc}(\bar{\Sigma}_t) \end{split}$$

Algorithm	G_t	r_t	q_t	Stability rate	finite- N error
P-EnKF	$A - \bar{\Sigma}_t H^2$	σ_B	$\Sigma_t H$	λ_0	$\propto N^{-1}(\sigma_B^2 + H^2)$
S-EnKF	$A - \frac{1}{2}\bar{\Sigma}_t H^2$	σ_B	0	$\frac{\lambda_0 - A}{2}$	$\propto N^{-1}\sigma_B^2$
D-EnKF	$A - \bar{\Sigma}_t H^2 + \frac{\sigma_B^2}{2\bar{\Sigma}_t}$	0	0	0	0

- \blacksquare a trade-off between stability and finite-N error
- Is this fundamental? Are there design principles that take this into consideration?

General form of EnKF:

$$\begin{split} \mathrm{d}\bar{X}_t &= \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t) \mathrm{d}t + r_t \mathrm{d}\bar{B}_t + q_t \mathrm{d}\bar{W}_t \\ \mathrm{s.t.} \quad 2G_t \bar{\Sigma}_t + r_t^2 + q - t^2 &= \mathrm{Ricc}(\bar{\Sigma}_t) \end{split}$$

Algorithm	G_t	r_t	q_t	Stability rate	finite- N error
P-EnKF	$A - \bar{\Sigma}_t H^2$	σ_B	$\Sigma_t H$	λ_0	$\propto N^{-1}(\sigma_B^2 + H^2)$
S-EnKF	$A - \frac{1}{2}\bar{\Sigma}_t H^2$	σ_B	0	$\frac{\lambda_0 - A}{2}$	$\propto N^{-1}\sigma_B^2$
D-EnKF	$A - \bar{\Sigma}_t H^2 + \frac{\sigma_B^2}{2\bar{\Sigma}_t}$	0	0	0	0

- lacksquare a trade-off between stability and finite-N error
- Is this fundamental? Are there design principles that take this into consideration?

General form of EnKF:

$$\begin{split} \mathrm{d}\bar{X}_t &= \mathcal{T}_t(\bar{m}_t, \bar{\Sigma}_t) + G_t(\bar{X}_t - \bar{m}_t) \mathrm{d}t + r_t \mathrm{d}\bar{B}_t + q_t \mathrm{d}\bar{W}_t \\ \mathrm{s.t.} \quad 2G_t \bar{\Sigma}_t + r_t^2 + q - t^2 &= \mathrm{Ricc}(\bar{\Sigma}_t) \end{split}$$

Algorithm	G_t	r_t	q_t	Stability rate	finite- N error
P-EnKF	$A - \bar{\Sigma}_t H^2$	σ_B	$\Sigma_t H$	λ_0	$\propto N^{-1}(\sigma_B^2 + H^2)$
S-EnKF	$A - \frac{1}{2}\bar{\Sigma}_t H^2$	σ_B	0	$\frac{\lambda_0 - A}{2}$	$\propto N^{-1} \sigma_B^2$
D-EnKF	$A - \bar{\Sigma}_t H^2 + \frac{\sigma_B^2}{2\bar{\Sigma}_t}$	0	0	0	0

- lacksquare a trade-off between stability and finite-N error
- Is this fundamental? Are there design principles that take this into consideration?