

Gesture recognition

Gesture

Sensor measurements

Hidden state: **Measurements: Problem:**

Motion of hand Motion sensors, accelerometer and gyroscope Detection of a gesture in real-time

Navigation

Measurements: Problem:

Camera and motion sensor Estimate the state based on measurements

Challenges

- . Nonlinear dynamics
- 2. Model uncertainties
- 3. Sensor noise
- 4. Real-time and reliable solution

Approach: Probabilistic, Nonlinear filtering

Objective: Compute probability distribution of state given measurements $\mathsf{P}(X_k|Z_1,\ldots,Z_k)$

Filtering algorithms

Linear and Gaussian: Kalman filter Nonlinear and non-Gaussian: Extended Kalman filter, particle filter

Feedback Particle Filter

- Move particles with a control law s.t

$X_{k+1}^{i} \sim \mathsf{P}(X_{k+1}|Z_{1},\ldots,Z_{k+1})$

- The control law has a feedback structure
 - Gain * Error
- Gain is solution to a BVP \rightarrow hard to solve!

FPF vs particle filter

► Variance reduction

Feedback Particle Filter Amirhossein Taghvaei, Chi Zhang, Rohan Arora, Prashant Mehta Mehta Research Lab, Coordinated Science Laboratory, University of Illinois at Urbana-Champaign

$$egin{aligned} X_k \ X_k &
ightarrow X_{k+1} \ X_k &
ightarrow Z_k \end{aligned}$$

Acknowledgement

Research supported by NSF grants 1334987 and 1462773.