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input l output
hidden layers

Objective: Study the optimization problem in feedforward NN
This work: Analysis of the critical points of a linear network (with regularization)

Related work:
m A. M. Saxe, et. al. (2013) Exact solutions to the nonlinear dynamics . ..
= M. Hardt, T. Ma. (2016) Identity matters in deep learning

= S. Gunasekar, et. al. (2017) Implicit regularization in matrix factorization
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Network model

Feedforward NN

X,

output
hidden layers

Xl+1 = O'(Wle)

Xo : input
X1 : output
Wi weights
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Network model

Feedforward NN Linear continuous network
Xo(1)
Xo(2)
dx
ot = AXy
Xt
Xo(d) —
—_— t
l output
hidden layers input hidden layers output
dX:
Xip1 = o(Wi X)) 5 = ArXe
Xo @ input Xo : initial value
X1 : output X7 : terminal value
Wi @ weights Ay @ control variable
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Network model

Feedforward NN

X1

output

hidden layers

Xl+1 = O‘(Wle)

Xo : input
X1 : output
Wi weights

input

Discretization: X;4a¢ = Xt + AtA; X (Res net)

Critical Points of Linear Networks

Linear continuous network

dx
ot = AXy

hidden layers output

dX;
dt

Xo : initial value

= AtXt

X7 : terminal value

Az . control variable
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Problem formulation

Data: (Xo,Z) € R* x R?
Model: Z= RXo + ¢
N~

linear model noise
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Problem formulation

Data: (Xo,Z) € R? x R*
Model: Z= RXo + ¢
N~

linear model noise

Optimization problem:

L 1 )
Minimize: J[A] = 5E [ X7 — Z|7]
mean-squared loss

dX;

Subject to: T

= A Xy, Xo~po
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Problem formulation

Data: (Xo,Z) € R? x R*
Model: Z= RXo + ¢
N~

linear model noise

Optimization problem:

I 1 2 A [T =
Minimize: J[A] = §E[|XT—Z|] + 5/0 tr(A; A;)dt

mean-squared loss .
regularization

dX;

Subject to: T

= A Xy, Xo~po

= (A =0) : No regularization.
m (A > 0) : Explicit regularization
= (A=0") : Implicit regularization
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Outline

Motivation

Problem formulation

Scalar case

Optimal control formulation

Main result: Characterization of critical points.
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Scalar case (d = 1)

Model: Z = RXo +¢&

Mini;‘nize: J[A] = fE[|X - Z)?] A/ A7 dt
Subject to: d;it = A Xe, Xo~po
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Scalar case (d = 1)

Model: Z = RXo +¢&

Mini;‘nize: J[A] = fE[|X - Z)?] A/ A7 dt
Subject to: djit = A Xe, Xo~po

Proposition
Assume R > 0. Then the critical points are
1 T
m(A=0): A= —log(R)—l—Bt s.t / B;dt=0

0
B (A>0) A =Cy (constant)

m(A=0") A, =Co= log(R) (unique, minimum norm)

AC = " (R — eTO)E[X?]
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Scalar case (d = 1)

Model: Z = RXo + ¢

Minimize: J[A] = 7E[|X - z%] A/ A7 dt
Subject to: djit = A:X:, Xo~po

Proposition

Assume R > 0. Then the critical points are
T
| ()\:0) At:%log(R)—f—Bt S.t/ Btdt:O
0
m (A >0): A; = C, (constant)

m(A=0") A, =Co= %log(R) (unique, minimum norm)

AC = e"(R — eTO)E[X?]

o T 1 7P 2

Proof sketch: Xp = efo A 4 X, and / AZdt > T (/ Ay dt)
0 0
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Scalar case (d = 1)

Model: Z = RXo +¢&

Mini;‘nize: J[A] = fE[|X - Z)?] A/ A7 dt
Subject to: djit = A Xe, Xo~po

Proposition
Assume R > 0. Then the critical points are
1 T
m(A=0): A= —log(R)—i—Bt s.t/ B;dt=0

0
B (A>0) A =Cy (constant)

m(A=0") A, =Co= log(R) (unique, minimum norm)
AC = " (R — eTO)E[X?]

Question: How to generalize to the vector case? Is the minimizer always a constant?
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Outline

Motivation

Problem formulation

Scalar case

Optimal control formulation

Main result: Characterization of critical points.
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QOutline

Optimal control formulation
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Optimal control formulation

Optimal control problem:

T
Minimize: J[A] = LE [|Xr — 2] + 5/ tr (AT Aj)dt
A 2\—’_,/ 2 0

terminal cost
control cost

. dX
dynamics: dtt = A X, Xo~po
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Optimal control formulation

Optimal control problem:

P 1 9 A [T =
Minimize: J[4] = L E [|Xr — 2P7] + 5/0 tr (AT Aj)dt

terminal cost
control cost

. dX
dynamics: dtt = A X, Xo~po
Two appoaches:

m Dynamic programming: HJB equation

m Maximum principle: Hamilton's equations

Usual assumption: The control variable A; is measurable w.r.t X,
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Optimal control formulation

Optimal control problem:

P 1 9 A [T =
Minimize: J[4] = L E [|Xr — 2P7] + 5/0 tr (AT Aj)dt

terminal cost
control cost

. dX
dynamics: L= A Xy, Xo~po
dt
Two appoaches:

m Dynamic programming: HJB equation

m Maximum principle: Hamilton's equations

Usual assumption: The control variable A; is measurable w.r.t X,
But: In this (NN) setting, A; can not be a function of X;(w).
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Optimal control formulation

Optimal control problem:
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Maximum principle and Hamilton’s equations

Hamiltonian function:
H(z,y,B) =y' Bz — gtr(BTB)

where 2,5 € R? and B € R™*¢
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Maximum principle and Hamilton’s equations

Hamiltonian function:
T A T
H(z,y,B)=y Bz — §tr(B B)

where 2,5 € R? and B € R™*¢

Pontryagin's Maximum Principle
Suppose A: is the minimizer and X; is the corresponding trajectory. Then there exists a
random process Y : [0,7] — R? such that A, maximizes the expected value of the

Hamiltonian

Ay = argmax  E[H(X4,Y:, B)]
B € My(R)

and X, Y; solve the Hamilton's equations

dx oH

dtt = +87y(Xt,Y;,At) =+A4: X, Xo~po

dy;  OH . T _

— =0 (Xe,Ye, Ar) = —A Yy, Yr=2-Xr

And the converse is true.
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Relation to backprop algorithm

First order variation: -
VJ[A] = —E |:6iB(Xt’Y;’At):|
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Relation to backprop algorithm

First order variation:
OH

VJ[A] = E{aB(

Xt,YE,At)}

Stochastic gradient-descent: Given A and (X*), Zz())

OH

k k k k k
A,E ) :Ai )+77k @(Xf )71/t( >7A1E ))

vB) x®T_5a®

where 7, is the step-size and

(Forward propagation) %Xt(k) +AM Xx® - with init. cond. X

(Backward propagation) th(k)z—Aik)TY;(k), Y(k) z® X(Tk)
dt ————

error

[LeCun, et. al. (1988)]
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Outline

Motivation

Problem formulation

Scalar case

Optimal control formulation

Main result: Characterization of critical points.
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QOutline

Main result: Characterization of critical points.
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Vecotr case, No regularization (A = 0)

Model: Z = RXo +¢&

L 1 )
Mln[£r1|ze: J[4] = §E [| X7 — Z|7]
dX;

dt
Assumption: log(R) € My(R) exists and ¥ := E[Xo X, | is invertible

Definition: ®; is the state transition matrix for djit = A X: st Xy = . X,

Subject to: = At X, Xo~po
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Vecotr case, No regularization (A = 0)

Model: Z = RXo +¢&

. 1 )
Mlng\lze: J[4] = §E [| X7 — Z|7]
dX;

dt
Assumption: log(R) € My(R) exists and ¥ := E[Xo X, | is invertible

Definition: ®; is the state transition matrix for dcit = A X: st Xy = . X,

m Any A; such that (&7 — R)X = 0 is a critical point

Subject to: = At X, Xo~po

m All critical points are global minimizers
VIJAl=0 & J4]= m‘}nJ[V] = J"
m The optimality gap is upper-bounded by the gradient

IVI[A][|22 > Te 20" I14elrdty L) (3[4] — J%)
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Vector case, with regularization (A > 0)

Model: Z = RXo +¢&
R 1 o A [T =
Minimize: J[A] = -E[|Xr—Z|°] + 5 [ tr(A; Ay)dt
A 2 2 /o

dX;

bject to:
Subject to "

= A X:, Xo~po
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Vector case, with regularization (A > 0)

Model: Z = RXo +¢&
Minimize: J[A] = 1 [1Xr — Z*] + A Ttr (Al Ap)dt
A 2 2 Jo ‘

dX;

bject to:
Subject to "

= A X:, Xo~po

Proposition (main result)

The critical points are given by solutions to the characteristic equation:

AC = eTceT(cT —Q) (R — eT(c—cT)eTcT)E

And the weights are
A, = et(C—CT)Ce—t(C—CT)
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Vector case, with regularization (A > 0)

Model: Z = RXo +¢&

R 1 o A [T =
Minimize: JiA] = 5E[|XT—Z| ] +§/0 tr(A; Ay)dt

dX;

bject to:
Subject to "

= A X:, Xo~po

Proposition (main result)

The critical points are given by solutions to the characteristic equation:

AC = eTceT(cT —Q) (R — eT(c—cT)eTcT)E

And the weights are
A, = et(C—CT)Ce—t(C—CT)

If R is not normal (R'R# RR") = C is not normal = A, is not constant
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Analysis of the characteristic equation

Characteristic equation:

AC = eTceT(cT 7C)(R . 6T(C7CT)6TCT)Z

Assumption: ¥ = I and R is normal (RR" = R" R)
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Analysis of the characteristic equation

Characteristic equation:

AC = eTceT(cT 7C)(R . 6T(C7CT)6TCT)Z

Assumption: ¥ = I and R is normal (RR" = R" R)

Set A = 0. The normal solutions are
C(0) = X log(R)
For each solution, 3 neighborhood of A = 0 s.t the solution continue to exist
€N = 7 108(R) — 2 (RRT) ™ log(R) + O(2?)

(implicit function thm)
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Analysis of the characteristic equation

Characteristic equation:

AC = eTceT(cT 7C)(R . 6T(C7CT)6TCT)Z

Assumption: ¥ = I and R is normal (RR" = R" R)

Proposition

Set A = 0. The normal solutions are
C(0) = X log(R)
For each solution, 3 neighborhood of A = 0 s.t the solution continue to exist
€N = 7 108(R) — 2 (RRT) ™ log(R) + O(2?)
(implicit function thm)

Remark: There are non normal solutions too!
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Numerical Examples

Example I: lllustrating solutions to the characteristic equation
0 1 T =1
-1 0 > =1

For A = 0, infinite number of solutions which are all global minimizers exist as:
0 -1
log(R) = (7/2 + 2n) =:C(0;n), m=0,£1,£2,...
1 0

and infinite number of non-normal solutions also exist.

For A > 0, the solution can be numerically obtained by continuing from each A =0

solutions.
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Numerical Examples

Example I: lllustrating solutions to the characteristic equation

4.5 — 3
T.‘f‘?tz-)r}tz —  minimum 7 10(X;2) —  minimum
9 5m 1 ---  saddle pt. ---  saddle pt.
o ] —r = 5 C(\ —2)
Ay 5
0.57 C(X;0) (Principal branch) J[A]4 // )
—1.5m ™ 1) B 3T e T D)
A e
3.5 77
a Cx—=2) Ay L C(X;0) (Principal branch
0.00 0.05 0.10 0.15 0.20 (9.00 0.05 0.10 0.15 0.20
(a) = (b) —A

m While every stable solutions are global minimizer for A = 0, unique global minimizer

which corresponds to the principal branch arises when A > 0.

m Local minimizers are eliminated when X\ is sufficiently large
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Numerical Examples

Example |l: Learning

m The system initialized by A corresponding to the C(0.03,2), trained with n = 0.05

o o
0 5000 10000 k 15000 20000 25000 0.0 0.2 0.4 0.6 0.8 1.0
t

m The learning method visit local minimums, but eventually converged to the global

minimum corresponding to the principal branch.
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Final slide
Conclusions and remarks

= (Main result) Reduction of the infinite-dimensional optimization problem to the
finite-dimensional characteristic equation

A =FT(R-F)%
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Final slide
Conclusions and remarks

= (Main result) Reduction of the infinite-dimensional optimization problem to the
finite-dimensional characteristic equation

A =F"(R-F)%

= (future work) Generalization: given samples (X§, 2N,

AC=FT(R—F)s(N) 4 pTQW)

N
1 o
=M = =S xixET
N &

1 X T
Q=+ DX
i=1
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Final slide
Conclusions and remarks

= (Main result) Reduction of the infinite-dimensional optimization problem to the
finite-dimensional characteristic equation

M =FT(R-F)(Z+e)+ e
= (future work) Generalization: given samples (X¢, ZH)N ;

AC=FT(R—F)S(N) 4 pTQW)
N
1 .
=M = S xExET
N i=1

1 i 8 T
Q=+ D &%
=1

Generalization is related to sensitivity w.r.t ¢1, e
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Final slide
Conclusions and remarks

= (Main result) Reduction of the infinite-dimensional optimization problem to the
finite-dimensional characteristic equation

A =FT(R-F)%
= (future work) Generalization: given samples (X¢, 2V,
A =FT(R-F)s™ + FTQW)
= (future work) Second order analysis

= (Far in the future work) Complete characterization of solutions to the characteristic eq.

= (Far in the future work) Extension to nonlinear setting

Thank you for your attention!

Questions?
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First order variation

1 o AT T
0
A e M = L*([0,T]; Ma(R))
J:H—-R
Definition: VJ[A] € H s.t

(VJ[A], V) 2 = lim M, YV € H
e—0 €
Formula in terms of Hamiltonian:

H
VIA] = — {ng(Xt,y;,At)} =M, —E [y; XJ]

where X; and Y; are obtained by solving the Hamilton's equations.
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