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Motivation

input
hidden layers

output

Objective: Study the optimization problem in feedforward NN

This work: Analysis of the critical points of a linear network (with regularization)

Related work:

A. M. Saxe, et. al. (2013) Exact solutions to the nonlinear dynamics . . .

M. Hardt, T. Ma. (2016) Identity matters in deep learning

S. Gunasekar, et. al. (2017) Implicit regularization in matrix factorization
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Network model

Feedforward NN

input
hidden layers

output

Xl+1 = σ(WlXl)

X0 : input

XL : output

Wl : weights

Linear continuous network

dXt
dt

= AtXt

X0 : initial value

XT : terminal value

At : control variable

Discretization: Xt+∆t = Xt + ∆tAtXt (Res net)
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Problem formulation

Data: (X0, Z) ∈ Rd × Rd

Model: Z = RX0︸ ︷︷ ︸
linear model

+ ξ︸︷︷︸
noise

Optimization problem:

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]︸ ︷︷ ︸
mean-squared loss

+
λ

2

∫ T

0

tr (A>t At) dt︸ ︷︷ ︸
regularization

Subject to:
dXt
dt

= AtXt, X0 ∼ p0

(λ = 0) : No regularization.

(λ > 0) : Explicit regularization

(λ = 0+) : Implicit regularization
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Outline

1 Motivation

2 Problem formulation

3 Scalar case

4 Optimal control formulation

5 Main result: Characterization of critical points.
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Scalar case (d = 1)

Model: Z = RX0 + ξ

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]
+

λ

2

∫ T

0

A2
t dt

Subject to:
dXt
dt

= AtXt, X0 ∼ p0

Proposition

Assume R > 0. Then the critical points are

(λ = 0): At =
1

T
log(R) +Bt s.t

∫ T

0

Bt dt = 0

(λ > 0): At = Cλ (constant)

(λ = 0+): At = C0 =
1

T
log(R) (unique, minimum norm)

λC = eTC(R− eTC)E[X2
0 ]
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(λ = 0+): At = C0 =
1

T
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Proof sketch: XT = e
∫ T
0 At dtX0 and

∫ T

0

A2
t dt ≥ 1

T

(∫ T

0

At dt

)2
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1

T
log(R) (unique, minimum norm)

λC = eTC(R− eTC)E[X2
0 ]

Question: How to generalize to the vector case? Is the minimizer always a constant?
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Optimal control formulation

Optimal control problem:

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]︸ ︷︷ ︸
terminal cost

+
λ

2

∫ T

0

tr (A>t At) dt︸ ︷︷ ︸
control cost

dynamics:
dXt
dt

= AtXt, X0 ∼ p0

Two appoaches:

Dynamic programming: HJB equation

Maximum principle: Hamilton’s equations

Usual assumption: The control variable At is measurable w.r.t Xt

But: In this (NN) setting, At can not be a function of Xt(ω).

Critical Points of Linear Networks Amirhossein Taghvaei 5 / 14 Amirhossein Taghvaei



Optimal control formulation

Optimal control problem:

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]︸ ︷︷ ︸
terminal cost

+
λ

2

∫ T

0

tr (A>t At) dt︸ ︷︷ ︸
control cost

dynamics:
dXt
dt

= AtXt, X0 ∼ p0

Two appoaches:

Dynamic programming: HJB equation

Maximum principle: Hamilton’s equations

Usual assumption: The control variable At is measurable w.r.t Xt

But: In this (NN) setting, At can not be a function of Xt(ω).

Critical Points of Linear Networks Amirhossein Taghvaei 5 / 14 Amirhossein Taghvaei



Optimal control formulation

Optimal control problem:

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]︸ ︷︷ ︸
terminal cost

+
λ

2

∫ T

0

tr (A>t At) dt︸ ︷︷ ︸
control cost

dynamics:
dXt
dt

= AtXt, X0 ∼ p0

Two appoaches:

Dynamic programming: HJB equation

Maximum principle: Hamilton’s equations

Usual assumption: The control variable At is measurable w.r.t Xt

But: In this (NN) setting, At can not be a function of Xt(ω).

Critical Points of Linear Networks Amirhossein Taghvaei 5 / 14 Amirhossein Taghvaei



Optimal control formulation

Optimal control problem:

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]︸ ︷︷ ︸
terminal cost

+
λ

2

∫ T

0

tr (A>t At) dt︸ ︷︷ ︸
control cost

dynamics:
dXt
dt

= AtXt, X0 ∼ p0

Two appoaches:

Dynamic programming: HJB equation

Maximum principle: Hamilton’s equations

Usual assumption: The control variable At is measurable w.r.t Xt

But: In this (NN) setting, At can not be a function of Xt(ω).

Critical Points of Linear Networks Amirhossein Taghvaei 5 / 14 Amirhossein Taghvaei



Maximum principle and Hamilton’s equations

Hamiltonian function:

H(x, y,B) = y>Bx− λ

2
tr(B>B)

where x, y ∈ Rd and B ∈ Rd×d

Pontryagin’s Maximum Principle

Suppose At is the minimizer and Xt is the corresponding trajectory. Then there exists a

random process Y : [0, T ]→ Rd such that At maximizes the expected value of the

Hamiltonian

At = arg max
B ∈Md(R)

E[H(Xt, Yt, B)]

and Xt, Yt solve the Hamilton’s equations

dXt
dt

= +
∂H

∂y
(Xt, Yt, At) = +AtXt, X0 ∼ p0

dYt
dt

= −∂H

∂x
(Xt, Yt, At) = −A>t Yt, YT = Z −XT

And the converse is true.
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Relation to backprop algorithm

First order variation:

∇J[A] := −E

[
∂H

∂B
(Xt, Yt, At)

]

Stochastic gradient-descent: Given A
(K)
t and (X(k), Z(k))

A
(k+1)
t = A

(k)
t + ηk

∂H

∂B
(X

(k)
t , Y

(k)
t , A

(k)
t )︸ ︷︷ ︸

Y
(k)
t X

(k)
t

>
−λA(k)

t

where ηk is the step-size and

(Forward propagation)
d

dt
X

(k)
t = +A

(k)
t X

(k)
t , with init. cond. X

(k)
0

(Backward propagation)
d

dt
Y

(k)
t = −A(k)>

t Y
(k)
t , Y

(k)
T = Z(k) −X(k)

T︸ ︷︷ ︸
error

[LeCun, et. al. (1988)]
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Vecotr case, No regularization (λ = 0)

Model: Z = RX0 + ξ

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]
Subject to:

dXt
dt

= AtXt, X0 ∼ p0

Assumption: log(R) ∈Md(R) exists and Σ := E[X0X
>
0 ] is invertible

Definition: Φt is the state transition matrix for
dXt
dt

= AtXt s.t Xt = ΦtX0,

Proposition

Any At such that (ΦT −R)Σ = 0 is a critical point

All critical points are global minimizers

∇J[A] = 0 ⇔ J[A] = min
V

J[V ] =: J∗

The optimality gap is upper-bounded by the gradient

‖∇J[A]‖2L2 ≥ Te−2
∫ T
0 ‖At‖F dtλmin(Σ)(J[A]− J∗)
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Vector case, with regularization (λ > 0)

Model: Z = RX0 + ξ

Minimize:
A

J[A] =
1

2
E
[
|XT − Z|2

]
+
λ

2

∫ T

0

tr (A>t At) dt

Subject to:
dXt
dt

= AtXt, X0 ∼ p0

Proposition (main result)

The critical points are given by solutions to the characteristic equation:

λC = eTCeT (C>−C)(R− eT (C−C>)eTC>
)Σ

And the weights are

At = et(C−C>)Ce−t(C−C>)

If R is not normal (R>R 6= RR>) ⇒ C is not normal ⇒ At is not constant
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Analysis of the characteristic equation

Characteristic equation:

λC = eTCeT (C>−C)(R− eT (C−C>)eTC>
)Σ

Assumption: Σ = I and R is normal (RR> = R>R)

Proposition

1 Set λ = 0. The normal solutions are

C(0) =
1

T
log(R)

2 For each solution, ∃ neighborhood of λ = 0 s.t the solution continue to exist

C(λ) =
1

T
log(R)− λ

T 2
(RR>)−1 log(R) +O(λ2)

(implicit function thm)

Remark: There are non normal solutions too!
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Numerical Examples

Example I: Illustrating solutions to the characteristic equation

R =

 0 1

−1 0

 ,
T = 1

Σ = I

For λ = 0, infinite number of solutions which are all global minimizers exist as:

log(R) = (π/2 + 2nπ)

 0 − 1

1 0

 =: C(0;n), n = 0,±1,±2, . . .

and infinite number of non-normal solutions also exist.

For λ > 0, the solution can be numerically obtained by continuing from each λ = 0

solutions.
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Numerical Examples

Example I: Illustrating solutions to the characteristic equation

While every stable solutions are global minimizer for λ = 0, unique global minimizer

which corresponds to the principal branch arises when λ > 0.

Local minimizers are eliminated when λ is sufficiently large
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Numerical Examples

Example II: Learning

The system initialized by A corresponding to the C(0.03, 2), trained with η = 0.05

The learning method visit local minimums, but eventually converged to the global

minimum corresponding to the principal branch.
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Final slide
Conclusions and remarks

(Main result) Reduction of the infinite-dimensional optimization problem to the

finite-dimensional characteristic equation

λC = F>(R− F )Σ

(future work) Generalization: given samples (Xi
0, Z

i)Ni=1

λC = F>(R− F )Σ(N) + F>Q(N)

(future work) Second order analysis

(Far in the future work) Complete characterization of solutions to the characteristic eq.

(Far in the future work) Extension to nonlinear setting

Thank you for your attention!

Questions?
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Final slide
Conclusions and remarks

(Main result) Reduction of the infinite-dimensional optimization problem to the

finite-dimensional characteristic equation

λC = F>(R− F )(Σ + ε1) + ε2

(future work) Generalization: given samples (Xi
0, Z

i)Ni=1

λC = F>(R− F )Σ(N) + F>Q(N)

Σ(N) :=
1

N

N∑
i=1

Xi
0X

i
0
>

Q =
1

N

N∑
i=1

ξiXi
0
>

Generalization is related to sensitivity w.r.t ε1, ε2

(future work) Second order analysis

(Far in the future work) Complete characterization of solutions to the characteristic eq.

(Far in the future work) Extension to nonlinear setting
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First order variation

J[A] :=
1

2
E
[
|XT − Z|2

]
+
λ

2

∫ T

0

tr (A>t At) dt

A ∈ H := L2([0, T ];Md(R))

J : H → R

Definition: ∇J[A] ∈ H s.t

〈∇J[A], V 〉L2 = lim
ε→0

J(A+ εV )− J

ε
, ∀V ∈ H

Formula in terms of Hamiltonian:

∇J[A] := −E

[
∂H

∂B
(Xt, Yt, At)

]
= λAt − E

[
YtX

>
t

]
where Xt and Yt are obtained by solving the Hamilton’s equations.
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