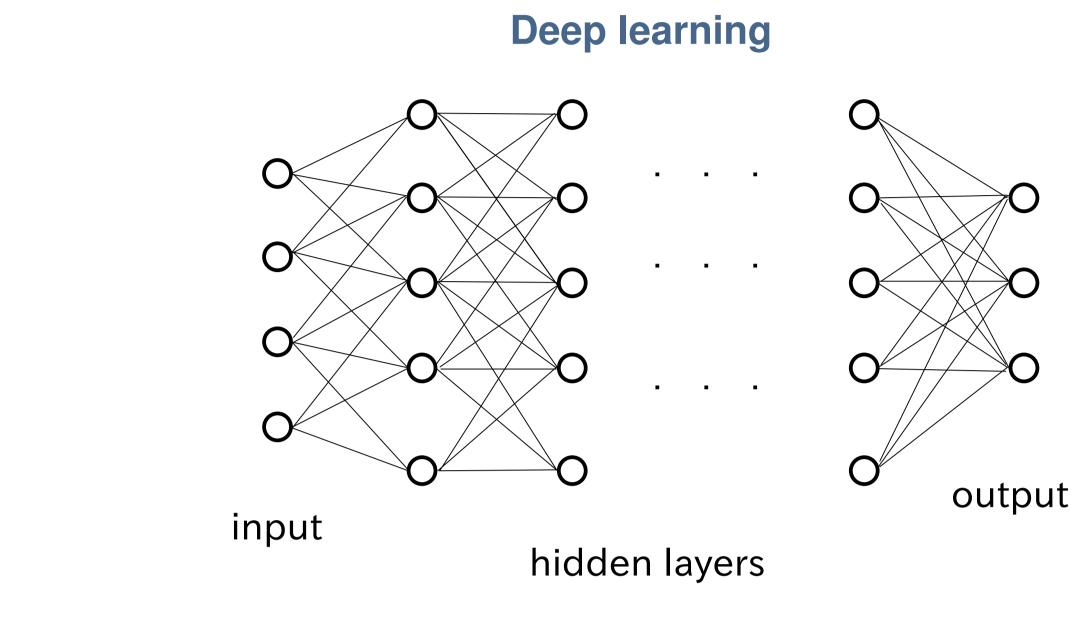


Motivation



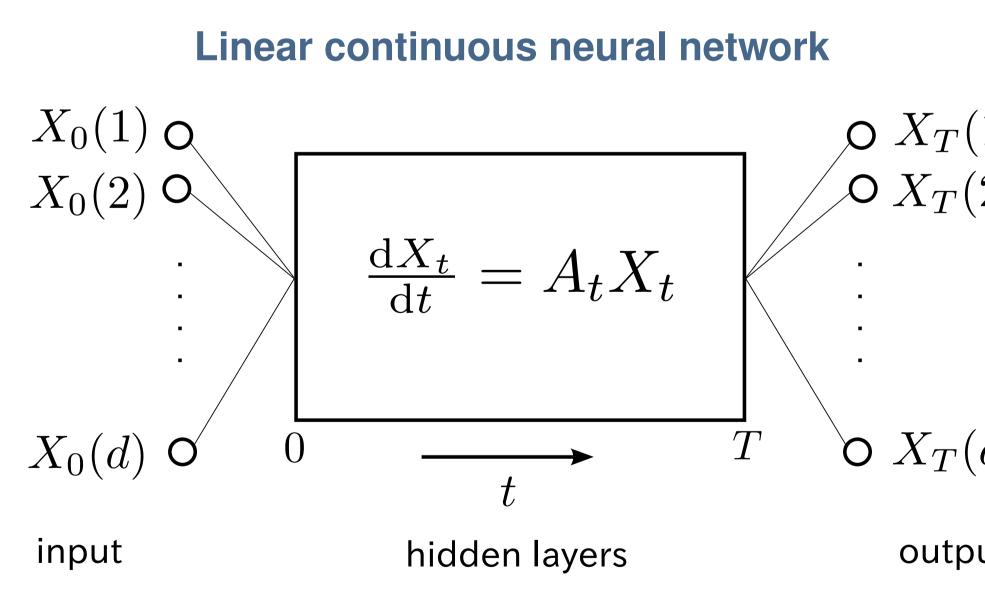
Objective: Analysis of the critical points of the associated no optimization problem

This work: Analysis of the critical points of a linear netw (with regularization)

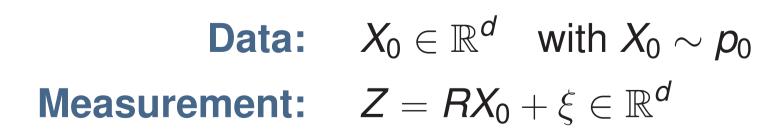
Related work:

- A. M. Saxe, et. al. Exact solutions to the nonlinear dynamics of le deep linear neural networks (2013)
- ► M. Hardt and T. Ma. Identity matters in deep learning (2016).

Problem formulation



Model:



- \blacktriangleright *R* is a *d* \times *d* matrix
- $\triangleright \xi$ is noise with mean zero
- \blacktriangleright $\Sigma := E[X_0 X_0^{\top}]$ is invertible

Problem: Learn the linear transformation R with the linear cont

	Optimization problem
	Optimal control formulation
	$\operatorname{Minimize:}_{A} J[A] = \frac{\lambda}{2} \int_{0}^{T} \operatorname{tr} (A_{t}^{\top} A_{t}) dt$
	regularization Subject to: $\frac{\mathrm{d}X_t}{\mathrm{d}t} = A_t X_t, X_0 \sim p_0$
	 (λ = 0) : No regularization. (λ > 0) : Explicit regularization (λ = 0⁺) : The limit as λ → 0. Models the dissipated
on-convex	Hamilton's formulation
	Hamiltonian function:
work	$H(x,y,B) = y^ op Bx - rac{\lambda}{2} ext{tr}(B)$
	where $x, y \in \mathbb{R}^d$ and $B \in \mathbb{R}^{d \times d}$
earning in	Pontryagin's maximum principle: Suppose A exists a random process $Y : [0, T] \to \mathbb{R}^d$ such th $\frac{\mathrm{d}X_t}{\mathrm{d}t} = +\frac{\partial H}{\partial y}(X_t, Y_t, A_t) = +A_t X_t, \mathcal{L}_t = -\frac{\partial H}{\partial x}(X_t, Y_t, A_t) = -A_t^\top Y_t,$
(1)	and A_t maximizes the expected value of the Han
(2)	$A_t = \underset{B \in M_d(\mathbb{R})}{\operatorname{argmax}} \operatorname{E}[\operatorname{H}(X_t, Y_t, B)] =$
	Backpropagation (with dissipation)
(d)	First order variation:
out	$ abla J[\mathcal{A}] := -E\left[rac{\partial H}{\partial B}(X_t, Y_t, \mathcal{A}_t) ight] = \lambda \mathcal{A}$
	where X_t and Y_t are obtained by solving the Har
	Stochastic gradient-descent:
	$oldsymbol{A}_t^{(k+1)} = oldsymbol{A}_t^{(k)} - \eta_k (\lambda oldsymbol{A}_t^{(k)} - oldsymbol{Y}_t^{(k)})$
	where η_k is the step-size and $X_t^{(k)}$ and $Y_t^{(k)}$ are on Hamilton's equations:
	(Forward propagation) $\frac{\mathrm{d}}{\mathrm{d}t}X_t^{(k)} = +A_t^{(k)}X_t^{(k)}$ (Backward propagation) $\frac{\mathrm{d}}{\mathrm{d}t}Y_t^{(k)} = -A_t^{(k)\top}Y_t^{(k)}$
	(Backward propagation) $\frac{\mathrm{d}}{\mathrm{d}t}Y_t^{(k)} = -A_t^{(k)\top}Y_t^{(k)}$
ntinuous NN	based on the sample $(X^{(k)}, Z^{(k)})$.

How Regularization Affects Critical Points in Linear Network

Amirhossein Taghvaei, Jin Kim, Prashant Mehta Coordinated Science Laboratory, University of Illinois at Urbana-Champaign Midwest Machine Learning Symposium, Chicago, 2017

Critical points and characteristic equation

Main result:

corresponding to $\frac{dX_t}{dt} = A_t X_t$.

$$\blacktriangleright (\lambda > 0): A_t = e^{t(C-C^{\top})}Ce^{-t(C-C^{\top})}$$

where
$$F := e^{T(C-C^{\top})} e^{TC^{\top}}$$

$$\blacktriangleright (\lambda = 0^+): A_t = e^{t(C - C^\top)} C e^{-t(C - C^\top)}$$

Examples

Case I: $R \in \mathbb{R}$ is a positive scal

•
$$(\lambda = 0)$$
: $A_t = \frac{1}{T} \log(R) + B_t$ for a

$$\blacktriangleright (\lambda > 0): A_t = C = \frac{1}{T} \log(R) + O(A)$$

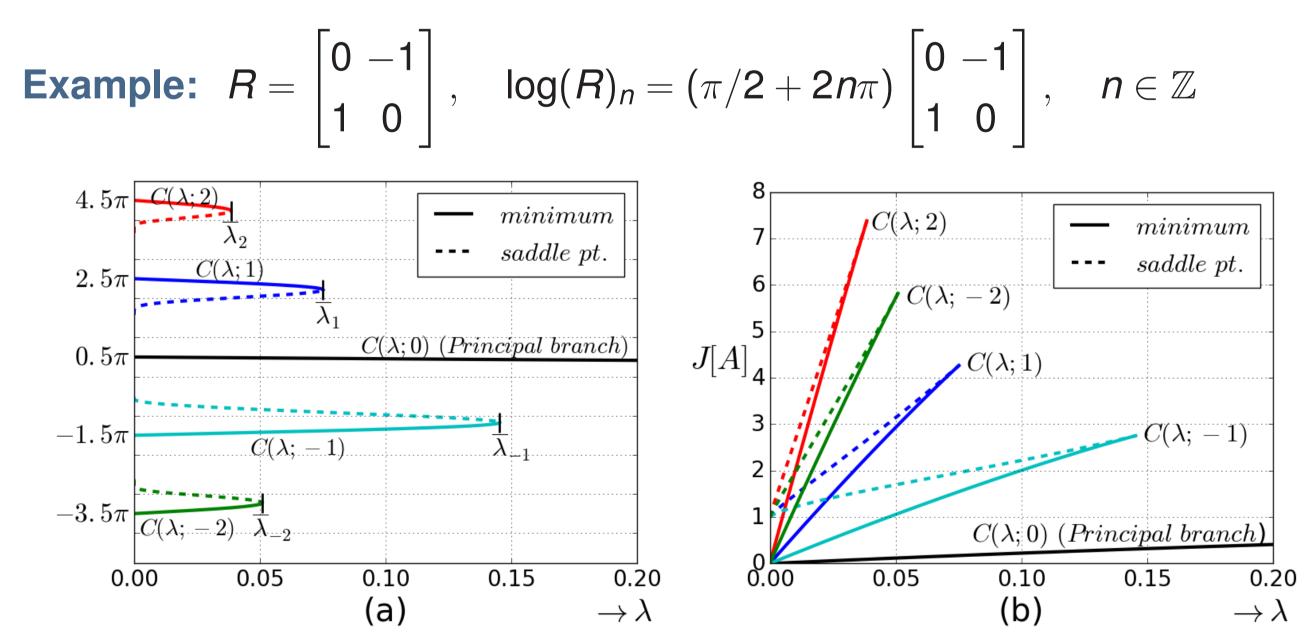
• (
$$\lambda = 0^+$$
): $A_t = C = \frac{1}{T} \log(R)$ (m

Case II: *R* is a normal matrix with det(R) > 0.

 \blacktriangleright ($\lambda > 0$): All the constant solutions are $= \mathbf{C} = \frac{1}{\tau} \log(\mathbf{R}) + O(\lambda)$

$$A_t =$$

where log(R) is multi-valued



 $n = 0, \pm 1, \pm 2$; (b) The cost J[A] for these solutions.

Future work

- . Stability analysis of the critical points
- 2. Introducing nonlinearity to the network

Acknowledgment

National Science Foundation grants 1334987 and 1462773

ation in the learning.

mean-squared loss

$$(B^{ op}B)$$

 A_t is the minimizer. Then there hat

$$X_0\sim p_0$$

 $Y_T = Z - X_T$

miltonian

 $\frac{1}{\lambda} \mathsf{E}[Y_t X_t^{\top}]$

$A_t - \mathsf{E}\left[Y_t X_t^{\top}\right]$

amilton's equations.

$$(k) X_t^{(k)^{\top}}),$$

obtained by solving the

$$X_{t}^{(k)}$$
, with init. cond. $X_{0}^{(k)}$
 $Y_{t}^{(k)}$, $Y_{T}^{(k)} = \underbrace{Z^{(k)} - X_{T}^{(k)}}_{\text{error}}$

 \blacktriangleright ($\lambda = 0$): Any A_t such that $\Phi_{0,T} = R$ where $\Phi_{0,t}$ is the state transition matrix

where C is a solution of $\lambda \mathbf{C} = \mathbf{F}^{ op} (\mathbf{R} - \mathbf{F}) \mathbf{\Sigma}$

) where C is a solution of $e^{T(\mathsf{C}-\mathsf{C}^{ op})} e^{T\mathsf{C}^{ op}} = R$

alar
ny
$$B_t$$
 s.t $\int_0^T B_t = 0$
 λ)

ninimum norm solution)

Figure : (a) Critical points (the (2, 1) entry of the solution matrix $C(\lambda; n)$ is depicted for