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Motivation

Deep learning

input 
hidden layers

output

Objective: Analysis of the critical points of the associated non-convex
optimization problem

This work: Analysis of the critical points of a linear network
(with regularization)

Related work:
I A. M. Saxe, et. al. Exact solutions to the nonlinear dynamics of learning in

deep linear neural networks (2013)

I M. Hardt and T. Ma. Identity matters in deep learning (2016).

Problem formulation

Linear continuous neural network

input outputhidden layers

Model:

Data: X0 ∈ Rd with X0 ∼ p0

Measurement: Z = RX0 + ξ ∈ Rd

I R is a d × d matrix

I ξ is noise with mean zero

I Σ := E[X0X>0 ] is invertible

Problem: Learn the linear transformation R with the linear continuous NN

Optimization problem

Optimal control formulation

Minimize:
A

J[A] =
λ

2

∫ T

0
tr (A>t At) dt︸ ︷︷ ︸

regularization

+
1
2

E
[
|XT − Z |2

]︸ ︷︷ ︸
mean-squared loss

Subject to:
dXt

dt
= AtXt, X0 ∼ p0

I (λ = 0) : No regularization.

I (λ > 0) : Explicit regularization

I (λ = 0+) : The limit as λ→ 0. Models the dissipation in the learning.

Hamilton’s formulation

Hamiltonian function:

H(x , y ,B) = y>Bx − λ
2

tr(B>B)

where x , y ∈ Rd and B ∈ Rd×d

Pontryagin’s maximum principle: Suppose At is the minimizer. Then there
exists a random process Y : [0,T ]→ Rd such that

dXt

dt
= +

∂H
∂y

(Xt,Yt,At) = +AtXt, X0 ∼ p0

dYt

dt
= −∂H

∂x
(Xt,Yt,At) = −A>t Yt, YT = Z − XT

and At maximizes the expected value of the Hamiltonian

At = arg max
B ∈Md(R)

E[H(Xt,Yt,B)] =
1
λ

E[Yt X>t ]

Backpropagation (with dissipation)

First order variation:

∇J[A] := −E
[
∂H
∂B

(Xt,Yt,At)

]
= λAt − E

[
Yt X>t

]
where Xt and Yt are obtained by solving the Hamilton’s equations.

Stochastic gradient-descent:

A(k+1)
t = A(k)

t − ηk(λA(k)
t − Y (k)

t X (k)
t
>

),

where ηk is the step-size and X (k)
t and Y (k)

t are obtained by solving the
Hamilton’s equations:

(Forward propagation)
d
dt

X (k)
t = +A(k)

t X (k)
t , with init. cond. X (k)

0

(Backward propagation)
d
dt

Y (k)
t = −A(k)>

t Y (k)
t , Y (k)

T = Z (k) − X (k)
T︸ ︷︷ ︸

error

based on the sample (X (k),Z (k)).

Critical points and characteristic equation

Main result:

I (λ = 0): Any At such that Φ0,T = R where Φ0,t is the state transition matrix
corresponding to dXt

dt = AtXt.

I (λ > 0): At = et(C−C>)Ce−t(C−C>) where C is a solution of

λC = F>(R − F )Σ

where F := eT (C−C>) eTC>.

I (λ = 0+): At = et(C−C>)Ce−t(C−C>) where C is a solution of

eT (C−C>) eTC> = R

Examples

Case I: R ∈ R is a positive scalar

I (λ = 0): At = 1
T log(R) + Bt for any Bt s.t

∫ T
0 Bt = 0

I (λ > 0): At = C = 1
T log(R) + O(λ)

I (λ = 0+): At = C = 1
T log(R) (minimum norm solution)

Case II: R is a normal matrix with det(R) > 0.

I (λ > 0): All the constant solutions are

At = C =
1
T

log(R) + O(λ)

where log(R) is multi-valued

Example: R =

[
0 −1
1 0

]
, log(R)n = (π/2 + 2nπ)

[
0 −1
1 0

]
, n ∈ Z

Figure : (a) Critical points (the (2,1) entry of the solution matrix C(λ; n) is depicted for
n = 0,±1,±2); (b) The cost J[A] for these solutions.

Future work

1. Stability analysis of the critical points

2. Introducing nonlinearity to the network
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