1867

Motivation

o/‘

o
O 0l
'V&Q’%‘(o
£\

SN

Deep learning

Input

Objective: Analysis of the critical points of the associated non-convex
optimization problem

This work: Analysis of the critical points of a linear network
(with regularization)

Related work:

> A. M. Saxe, et. al. Exact solutions to the nonlinear dynamics of learning in
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hidden layers
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deep linear neural networks (2013)

» M. Hardt and T. Ma. ldentity matters in deep learning (2016).

Problem formulation

Linear continuous neural network

d X
dt

t = A X,

Model:

hi

Data:

Measurement:

» Ris ad x d matrix
» £ IS noise with mean zero
> ¥ = E[XpX] ] is invertible

Problem: Learn the linear transformation R with the linear continuous NN

dden layers

Xo € Rd with Xg ~ Po
Z=RXy+€¢eR?
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Optimization problem

Optimal control formulation

-
Minimize:  J[A] = 5/ tr (A; A;)dt + L X7 —Z|7]
0

2 2 N e’
v mean-squared loss
regularization

d X
t Xo ~ Po

SUbJeCt tO Tt — /41‘)(1‘7

> (A
> (A > 0) : Explicit regularization

0) : No regularization.

» (A=07%): The limit as A — 0. Models the dissipation in the learning.

Hamilton’s formulation

Hamiltonian function:

H(x,y,B) =y 'Bx — %tr(BTB)

where x,y € R? and B € R9x¢

Pontryagin’s maximum principle: Suppose A; is the minimizer. Then there
exists a random process Y : [0, T] — RY such that

dX;,  oH
G = Ty Ve A) = HAX X po

dY oH

S =X Y A) =AY Yr=Z - Xy

and A; maximizes the expected value of the Hamiltonian

At — darg max E[H()(t7 Yt, B)] — 1E[\/t Xt—r]
B e My(R) A
Backpropagation (with dissipation)
First order variation:
H
VJ[A] = —F |:g—B(Xt7 Yta At):| — )\At —E [YtXl:r]

where X; and Y; are obtained by solving the Hamilton’s equations.

Stochastic gradient-descent:
.
A§k+1) _ Agk) —ok(n Agk) B Yt(k) Xt(k) )

where 7y Is the step-size and Xt(k) and Y,(k) are obtained by solving the
Hamilton’s equations:

. d | (k k) yo(K s k
(Forward propagation) EtXt( ) — +A§ )Xt( ) with init. cond. X(g )

d (K)T v (k)

: K K K
(Backward propagation) — V" = —A"T Y[ vy = 29— Xxi

W
error

based on the sample (X0, Z(K)

Critical points and characteristic equation

Main result:

> (A = 0): Any A; such that &g 1 = R where & ; Is the state transition matrix
corresponding to & = A¢X;.

> () > 0): A = ell6-C)CeHC-C") where C is a solution of

AC =F'(R-F)X

where F .= T(C-C") gTC"

> (A =0"): A; = elC-C)Ce 1(C-C") where C is a solution of

Examples

oT(C-C)

Case |l: R € R is a positive scalar
> (AN=0): A = lTIog(R) + B; for any B; s.t fOT B: =0

> (A > 0): A, =C = Llog(R) + O(}\)

> (A=0"%): A;=C = Llog(R)

e

.
TC:R

(minimum norm solution)

Case ll: R is a normal matrix with det(R) > 0.

» (A > 0): All the constant solutions are

1
A =C = T log(R) + O()\)
where log(R) is multi-valued
0 —1 0 —1
Example: R = . log(R)n, = (7/2 + 2nm) , nez
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Figure : (a) Critical points (the (2, 1) entry of the solution matrix C(\; n) is depicted for
n=0,4+1,4+2); (b) The cost J|A] for these solutions.

Future work

1. Stability analysis of the critical points

2. Introducing nonlinearity to the network

Acknowledgment

National Science Foundation grants 1334987 and 1462773



