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Outline

Part I: Bayes’ law and its fundamental challenges

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering

Part IV: Extension to data-driven setting
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Bayes’ law

Problem:

Hidden random variable X

Observed random variable Y

What is the conditional probability distribution of X given Y ? (posterior)

Bayes’ law: PX|Y =
PXPY |X

PY

Data-driven setting: PX,Y is not available.

Given: (Xi, Y i)Ni=1
i.i.d∼ PX,Y

Approximate: PX|Y =y for any given observation y
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Existing methodologies

Kalman filter (KF):

Assumes (X,Y ) is jointly Gaussian

PX,Y = N(

mX

mY

 ,

 ΣX ΣX,Y

ΣY,X ΣY

)
Implements the conditioning formula for jointly Gaussian random variables

PX|Y =y = N(mX +K(y −mY ),ΣX − ΣX,Y Σ−1
Y ΣY,X)

Data-driven counterpart: Fit a Gaussian distribution to the data (Xi, Y i)Ni=1 and
implement the conditioning formula → Ensemble Kalman filter (EnKF)

Widely used in meteorology

Fundamentally limited to Gaussian settings

G. Evensen. “Data Assimilation. The Ensemble Kalman Filter” (2006)
S. Reich, “A dynamical systems framework for intermittent data assimilation” (2011)
E. Calvello, S. Reich, and A. M. Stuart, “Ensemble kalman methods: a mean field perspective” (2022)
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Illustrative example
Fundamental challenges of EnKF

Setup:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

EnKF:

(Xi, Y i) ∼ PX,Y

fit a Gaussian

conditioning formula for Gaussians
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Existing methodologies

Importance sampling (IS) particle filter:

Requires samples/particles (Xi)Ni=1
i.i.d∼ PX and likelihood function PY |X

Compute the weights

wi ∝ PY =y|X=Xi

Approximate the posterior as weighted empirical distribution

PX|Y =y ≈
N∑
i=1

wiδXi

Asymptotically exact as N →∞
Suffers from weight degeneracy issue

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)
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Illustrative example
Fundamental challenges of importance sampling

Example:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

Importance sampling (IS):

Xi i.i.d∼ N (0, 1)

wi ∝ PY =1|X=Xi

PX|Y =1 ≈
N∑
i=1

wiδXi

−3 −2 −1 0 1 2 3
X

PX|Y=1

small noise regime: ϵ→ 0

This is the main reason for the curse of dimensionality of IS-based particle filters
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Curse of dimensionality in particle filters

X,Y ∈ Rn with i.i.d. components.

Exact posterior: πexact

IS approximation: π
(N)
IS

Asymptotic limit as N →∞:

d(πexact, π
(N)
IS ) ≃ C

γn

√
N

where d(·, ·) is the dual bounded metric and γ > 1.

Good news: accurate as N →∞ (universal for any prior and likelihood)

Bad news: error scales exponentially with the dimension n

Remedy: exploit problem specific properties (e.g. spatial correlation decay in
localization methods)

Alternative method: replacing IS with control or coupling-based techniques

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)
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Control and coupling techniques

Approximate McKean-Vlasov representations [Crisan & Xiong 2010]

Particle flow filters [Daum et. al. 2010]

A dynamical systems framework for data assimilation [Reich. 2011]

Mean-field control approach [Yang, Mehta, Meyn, 2011]
→ Feedback Particle Filter (FPF)

Posterior Matching via optimal transportation [Ma & Coleman, 2011]

Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

Ensemble Kalman methods: a mean field perspective [Calvello et. al. 2022]

Coupling techniques for nonlinear ensemble filtering [Spantini et. al. , 2022]

. . .

This talk: Conditioning with optimal transport map
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Conditioning with transport maps

Xi ∼ PX −→ T (Xi, y) ∼ PX|Y =y

Example:

Consider Y = X. Then, PX|Y =y = δy is represented by the map T (x, y) = y

Consider jointly Gaussian (X,Y ). Then PX|Y =y is represented by the (stochastic)
map X 7→ X +K(y − Y )

Questions: In a general setting,

does the map exists?

how to numerically find it?
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Background on optimal transportation theory
Monge problem and Brenier’s result

Given two random variables U ∼ PU and V ∼ PV

find a map x 7→ T (x) that transports PU to PV , i.e. T#PU = PV

with minimal transportation cost ∥T (x)− x∥2

Questions:

Does the optimal map exists? Yes, as long as PU admits Lebesgue density

How to numerically find it? semi-dual Kantorovich problem

max
f∈c-concave

min
T

E
[
1

2
∥T (U)− U∥2 − f(T (U)) + f(V )

]
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Conditioning with optimal transport map
Illustrative example

−→

?−−−−→
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Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

−−−−−−−−−−−−−→

small noise limit
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Conditioning with optimal transport map
Variational formulation of the Bayes’ law

Bayes law: PX|Y =
PXPY |X

PY

= T (·;Y )#PX

Conditional max-min formulation:

max
f∈c-concavex

min
T

E
[
1

2
∥T (X̄, Y )− X̄∥2 − f(T (X̄, Y ), Y ) + f(X;Y )

]

Computational properties:

Only requires samples (Xi, Yi) ∼ PXY (data-driven/simulation based)

Enables construction of “approximate” posterior distributions

Allows application of ML tools (stochastic optimization and neural nets)
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Conditioning with optimal transport map
Theoretical analysis

Variational problem: min
f

max
T

J(f, T ;PX,Y )

max-min optimality gap: ϵ(f, T )

(Conditional) Brenier’s theorem

(Well-posedness) If PX admits (Lebesgue) density, then, there exists a unique pair
(f, T ) that solves the variational problem and

T (·, y)#PX = PX|Y =y, a.e y

(Sensitivity) Let (f, T ) be a possibly non-optimal pair. Assume

x 7→ 1

2
∥x∥2 − f(x, y) is α-strongly convex for all y. Then,

d(T (·, Y )#PX , PX|Y ) ≤
√

4

α
ϵ(f, T ).

B. Hosseini, A. Hsu, A. Taghvaei Conditional Optimal Transport on Function Spaces (2023)
G. Carlier, V. Chernozhukov, A. Galichon, Vector quantile regression: an optimal trans- port approach.v (2016).
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About convexity assumption

Ensuring the assumption that

x 7→ 1

2
∥x∥2 − f(x, y) is α-strongly convex for all y

is computationally challenging

In practice, we do not enforce a convexity constraint

The optimizer outputs f that is, sometimes, slightly non-convex
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Nonlinear filtering problem

Model:

Xt ∼ a(· | Xt−1), X0 ∼ π0

Yt ∼ h(· | Xt)

Xt is the state

Yt is the observation

dynamic and observation models are available as simulators

Questions: Given history of observation Y1:t := {Y1, . . . , Yt},
What is the most likely value of Xt?

What is the probability of Xt ∈ A?

What is the best m.s.e estimate for Xt?

. . .

Answer: given by the conditional distribution πt = PXt|Y1:t
(posterior)

Nonlinear filtering: numerical approximation of the posterior πt for all t.
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Filtering equations

πt := P(Xt|Y1:t)

Two important operations:

Propagation: π
dynamics

−−−−→ Aπ

Conditioning: π
Bayes law

−−−−→ By(π)

Recursive update law for the posterior

πt−1

dynamics

−−−−→ πt|t−1 := Aπt−1

Bayes law

−−−−→ πt = BYt(πt|t−1) =: Tt,t−1(πt−1)

(Exponential) filter stability : ∃λ ∈ (0, 1) s.t.

d(Tt,0(π0), Tt,0(π̃0)) ≤ Cλkd(π0, π̃0), ∀π0, π̃0.
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Optimal Transport Filter

Filter design steps:

exact posterior: πt−1 −→ πt|t−1 = Aπt−1 −→ πt = BYt(πt|t−1)

mean-field process: X̄t−1 −→ X̄t|t−1 ∼ a(· | X̄t−1) −→ X̄t = T t(X̄t|t−1, Yt)

particle system: Xi
t−1 −→ Xi

t|t−1 ∼ a(· | Xi
t−1) −→ Xi

t = T̂t(X
i
t|t−1, Yt)

Variational problem:

← max
f

min
T

J(f, T ;PXt,Yt|Y1:t−1
)

T̂t ← max
f∈F

min
T∈T

J(f, T ;
1

N

N∑
i=1

δ(Xi
t|t−1

,Y i
t|t−1

))

Posterior approximation:

πt ≈ π̂
(N)
t =

1

N

N∑
i=1

δXi
t
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Optimal Transport Filter

Algorithm

Initialize:

particles {Xi
0}Ni=1 ∼ π0

neural nets f, T

For t = 1 to t = T do:

propagation: Xi
t|t−1 ∼ a(·|Xi

t−1) and Y i
t|t−1 ∼ h(·|Xi

t|t−1)

optimization: (T̂t, f̂t)← max
f∈F

min
T∈T

J(f, T ;
1

N

N∑
i=1

δ(Xi
t|t−1

,Y i
t|t−1

))

conditioning: Xi
t = T̂t(X

i
t|t−1, Yt)

Remarks:

No need for analytical form of the dynamic and observation models

In practice, only a few iterations of the optimization is performed
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Optimal Transport Filter
Error Analysis

Theorem

Assume

1 The exact filter is exponentially stable

2 Uniform bound ϵF,T ,N on the max-min optimality gap

3 The function x 7→ 1

2
∥x∥2 − f̂t(x, y) is α-strongly convex for all t and y.

4 Particles are resampled at each step

Then,

d(
1

N

N∑
i=1

δXi
t
, πt) ≤ C

(√
2

α
ϵF,T ,N +

1√
N

)
, ∀t.

Optimality gap ϵF,T ,N has the decomposition

ϵF,T ,N ≤ ϵF,T︸︷︷︸
approx. theory

+
CF,T√

N︸ ︷︷ ︸
statistical generalization

+ optimization error
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = Xt + σWWt,

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = X
2
t + σWWt,

0 1 2 3 4 5
time

0.1

0.2

0.3

0.4

0.5

M
M
D

EnKF
OT
SIR

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example: Lorenz 63

Trajectory of the particles

mean-squared error (mse) in estimating the state
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

True image

Observed part

     EnKF      OT      SIR
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OT

Amirhossein Taghvaei 23 / 32 Amirhossein Taghvaei



Extension to Riemannian manifolds
McCann’s result

Assume X ∈M with metric g and geodesic distance dg

Replace the Euclidean distance with the geodesic distance

Replace T (x, y) with expx(U(x, y)) where U(x, y) ∈ TxM

max
f :M→R

min
U :M→TM

E
[
1

2
dg(expX̄(U(X̄, Y )), X̄)2 − f(expX̄(U(X̄, Y )), Y ) + f(X;Y )

]

D. Grange, M. Al-Jarrah, R. Baptista, A. Taghvaei, T. Georgiou, S. Phillips, A. Tannenbaum, Computational optimal transport and filtering on Riemannian
manifolds, IEEE Control Systems Letters, 2023
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Numerical example: M = S1

θ ∈M is robot’s orientation and Y is noisy measurement of distance to the wall
Ro

bo
t o

rie
nt

ati
on

θ

ℓ

Y

Robot location
Room center

−1.00−0.75−0.50−0.250.000.250.500.751.00 −1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Pθ (prior)
Pθ|Y (exact posterior)
̂Pθ|Y (est. posterior)

D. Grange, M. Al-Jarrah, R. Baptista, A. Taghvaei, T. Georgiou, S. Phillips, A. Tannenbaum, Computational optimal transport and filtering on Riemannian
manifolds, IEEE Control Systems Letters, 2023
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Summary

Mathematical model:

Nonlinear filtering: compute the posterior πk = P(Xk|Y1:k)

OT approach:

Variational problem:

Tk ← max
f∈F

min
T∈T

J(f, T ;
1

N

N∑
i=1

δ(Xi
k
,Y i

k
))
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Outline

Part I: Bayes’ law and fundamental challenges of importance sampling

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering

Part IV: Extension to data-driven setting
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Data-driven setting

Problem setup:

Xt ∼ a(· | Xt−1), X0 ∼ π0

Yt ∼ h(· | Xt)

Xt is the state

Yt is the observation

the dynamic and observation models are unknown

Objective:

given: {Xj
0 , (X

j
1 , Y

j
1 ), . . . , (X

j
tf
, Y j

tf
)}Jj=1

compute: πt := P (Xt|Yt, . . . , Y1), ∀t ≥ 0

for a new set of observations {Yt, . . . , Y1}
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Data-driven setting
Solution approach

Exact posterior:

πt := PX0∼π0(Xt|Yt, . . . , Y1)

Step 1: Truncated posterior

πµ
t,s := PXs∼µ(Xt|Yt, . . . , Ys+1)

Step 2: OT representation

πµ
t,s = T (·, Yt, . . . , Ys)#µ where

T ← max
f∈F

min
T∈T

J(f, T ;PXt,Yt,...,Ys+1)

Step 3: Stationary assumption

PXt,Yt,...,Ys+1 = PXw,Yw,...,Y1 where w := t− s

Step 4: Use training data to approximate PXw,Yw,...,Y1
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Data-driven setting

Error analysis

Assume

The exact filter is exponentially stable

The process (Xt, Yt) is stationary

µ is equal to the stationary distribution of Xt and M := sup
t

d(πt, µ) <∞

(f, T ) is a possibly non-optimal pair with max-min gap ϵ(f, T )

The function x 7→ 1

2
∥x∥2− f(x, yw, . . . , y1) is α-strongly convex for all (yw, . . . , y1).

Then,

d(T (·, Yt, . . . , Yt−w)#µ, πt) ≤ CλwM +

√
4

α
ϵ(f, T )
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Numerical example

Model:

Xt = aXt−1 + σVt

Yt = h(Xt) + σWt
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Numerical example

Model:

Xt = aXt−1 + σVt

Yt = X2
t + σWt
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Numerical example
Lorenz 63 model

Ẋ = f(X), X0 ∼ N (µ0, σ
2
0I3),

Yt = Xt(1) +Wt, Wt ∼ N (0, σ2), ∆t = 0.01
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Numerical example
Lorenz 63 model

Ẋ = f(X), X0 ∼ N (µ0, σ
2
0I3),

Yt = Xt(1) +Wt, Wt ∼ N (0, σ2), ∆t = 0.01

Offline training time: 46.29 seconds

One-time step update:

Method EnKF SIR OTPF OT-DDF

time 1.7× 10−4 2.0× 10−4 6.8× 10−2 1.5× 10−4

Amirhossein Taghvaei 31 / 32 Amirhossein Taghvaei



Acknowledgments

M. Al-Jarrah N. Jin B. Hosseini NSF

References:

Amirhossein Taghvaei 32 / 32 Amirhossein Taghvaei


