

Motivation

Objective: Study the optimization problem in feedforward neural networks **This work:** Analyze critical points of a <u>linear</u> network (with regularization) Why linear network: They exhibit same behavior as nonlinear networks in learning. They are easier to analyze.

A. M. Saxe, et. al. (2013) Exact solutions to the nonlinear dynamics ... M. Hardt and T. Ma. (2016) Identity matters in deep learning S. Gunasekar, et. al. (2017) Implicit regularization in matrix factorization

Problem setup

Why continuous netowrk: Analysis is simpler and results are insightful

How Regularization Affects the Critical Points in Linear Networks

Optimization problem

Optimal control formulation

Minimize:
$$J[A] = \frac{\lambda}{2} \underbrace{\int_{0}^{T} tr(A_{t}^{\top} A_{t}) dt}_{regularization}$$

Subject to:
$$\frac{\mathrm{d}X_t}{\mathrm{d}t} = A_t X_t, \quad X_0 \sim p_0$$

 $(\lambda = 0)$: No regularization.

Example: *R* is a rotation matrix

Z =

 $(\lambda > 0)$: Explicit regularization

$$(\lambda=0^+)$$
 : The limit as $\lambda
ightarrow 0$. Implicit regula

Learning example

Questions:

What are the critical points that learning get stuck at? Is the global minimizer always constant? Why are some critical points constant and some not?

Approach: Optimal control theory

Hamiltonian function:

$$H(x,y,B) = y^{\top}Bx - \frac{\lambda}{2}$$
tr(

where $x, y \in \mathbb{R}^d$ and $B \in \mathbb{R}^{d \times d}$

Pontryagin's maximum principle: A_t is the critical point iff there exists a random process $Y : [0, T] \rightarrow \mathbb{R}^d$ such that

(Forward eq.)

$$\frac{\mathrm{d}X_{t}}{\mathrm{d}t} = +\frac{\partial \mathsf{H}}{\partial y}(X_{t}, Y_{t}, A_{t}) = +A_{t}X_{t}, \quad X_{0} \sim p_{0}$$
$$\frac{\mathrm{d}Y_{t}}{\mathrm{d}t} = -\frac{\partial \mathsf{H}}{\partial x}(X_{t}, Y_{t}, A_{t}) = -A_{t}^{\top}Y_{t}, \quad Y_{T} = \underbrace{Z - X_{T}}_{\text{error}}$$
$$A_{t} = \underset{B \in \mathcal{M}_{d}(\mathbb{R})}{\operatorname{arg\,max}} \operatorname{E}[\mathsf{H}(X_{t}, Y_{t}, B)] = \frac{1}{\lambda}\operatorname{E}[Y_{t}X_{t}^{\top}]$$

$$\begin{aligned} \frac{\partial X_t}{\partial t} &= +\frac{\partial H}{\partial y}(X_t, Y_t, A_t) = +A_t X_t, \quad X_0 \sim p_0 \\ \frac{\partial Y_t}{\partial t} &= -\frac{\partial H}{\partial x}(X_t, Y_t, A_t) = -A_t^\top Y_t, \quad Y_T = \underbrace{Z - X_T}_{\text{error}} \\ A_t &= \underset{B \in M_d(\mathbb{R})}{\operatorname{arg\,max}} \operatorname{E}[\operatorname{H}(X_t, Y_t, B)] = \frac{1}{\lambda} \operatorname{E}[Y_t X_t^\top] \end{aligned}$$

Amirhossein Taghvaei, Jin Kim, Prashant Mehta Coordinated Science Laboratory, University of Illinois at Urbana-Champaign 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA

arization [B. Neyshabur, 2017]

 $\begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix} X_0 + \xi, \quad X_0 \sim N(0, I_{2 \times 2}), \quad \lambda = 0.03$

 $(B^{\top}B)$

Result: Critical points (no regularization)

Definition: Φ_t is the state transition matrix for $\frac{dX_t}{dt} = A_t X_t$ s.t $X_t = \Phi_t X_0$, **Proposition:**

Any A_t such that $(\Phi_T - R)\Sigma = 0$ is a critical point All critical points are global minimizers

$$abla \mathsf{J}[A] = \mathsf{0}$$

The optimality gap is upper-bounded by the gradient

Result: Critical points (with regularization)

Proposition: The critical points are given by solutions to the characteristic equation:

$$(\lambda > 0): \quad \lambda C = e$$

$$(\lambda=0^+): \quad oldsymbol{e}^{\mathcal{T}(\mathsf{C}-\mathsf{C})}$$

And the weights are

$$A_t = e^{t(C-C^{\top})}Ce^{-t(C-C^{\top})}$$

Corollary:

C is normal ($C^{\top}C = CC^{\top}$) A_t is constant \iff

Example

Example: *R* is rotation matrix Normal critical points:

$$\mathsf{C}(\lambda;n) = \underbrace{igg[egin{array}{c} 0 \ \pi/2+2 \end{array} igg] }$$

Non-normal critical points: No result

Future work

Non-normal critical points Second order analysis

Generalization error

Acknowledgment

National Science Foundation grants 1334987 and 1462773

 $\Leftrightarrow \quad \mathsf{J}[A] = \min_{V} \mathsf{J}[V] =: J^*$ $\|\nabla \mathsf{J}[A]\|_{L^2}^2 \geq T e^{-2\int_0^T \|A_t\|_F dt} \lambda_{\min}(\Sigma)(\mathsf{J}[A] - \mathsf{J}^*)$

> $e^{TC}e^{T(C^{\top}-C)}(R-e^{T(C-C^{\top})}e^{TC^{\top}})\Sigma$ $f^{(T)}e^{TC^{\top}} = R$ (characteristic eq.)