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Motivation

Deep learning

input 
hidden layers

output

Objective: Study the optimization problem in feedforward neural networks

This work: Analyze critical points of a linear network (with regularization)

Why linear network: They exhibit same behavior as nonlinear networks in
learning. They are easier to analyze.

A. M. Saxe, et. al. (2013) Exact solutions to the nonlinear dynamics . . .

M. Hardt and T. Ma. (2016) Identity matters in deep learning

S. Gunasekar, et. al. (2017) Implicit regularization in matrix factorization

Problem setup

Network model:
Linear continuous neural network

input outputhidden layers

Xl+1 = σ(WlXl)
continuum limit−→

σ is identity

dXt

dt
= AtXt

Data model:

Data: (X0,Z0) ∈ Rd×Rd

Model: Z = RX0︸︷︷︸
linear model

+ ξ︸︷︷︸
noise

Assumptions:

Σ := E[X0X>0 ] is invertible

log(R) exists

Why continuous netowrk: Analysis is simpler and results are insightful

Optimization problem

Optimal control formulation

Minimize:
A

J[A] =
λ

2

∫ T

0
tr (A>t At)dt︸ ︷︷ ︸

regularization

+
1
2

E
[
|XT −Z |2

]
︸ ︷︷ ︸

mean-squared loss

Subject to:
dXt

dt
= AtXt, X0 ∼ p0

(λ = 0) : No regularization.

(λ > 0) : Explicit regularization

(λ = 0+) : The limit as λ → 0. Implicit regularization [B. Neyshabur, 2017]

Learning example

Example: R is a rotation matrix

Z =

[
0 +1
−1 0

]
︸ ︷︷ ︸

R

X0 + ξ , X0 ∼ N(0, I2×2), λ = 0.03

epoch

Questions:

What are the critical points that learning get stuck at?

Is the global minimizer always constant?

Why are some critical points constant and some not?

Approach: Optimal control theory

Hamiltonian function:

H(x ,y ,B) = y>Bx− λ

2
tr(B>B)

where x ,y ∈ Rd and B ∈ Rd×d

Pontryagin’s maximum principle: At is the critical point iff there exists a
random process Y : [0,T ]→ Rd such that

(Forward eq.)
dXt

dt
= +

∂H
∂y

(Xt,Yt,At) = +AtXt, X0 ∼ p0

(Backward eq.)
dYt

dt
=−∂H

∂x
(Xt,Yt,At) =−A>t Yt, YT = Z −XT︸ ︷︷ ︸

error

At = arg max
B∈Md(R)

E[H(Xt,Yt,B)] =
1
λ

E[Yt X>t ]

Result: Critical points (no regularization)

Definition: Φt is the state transition matrix for dXt
dt = AtXt s.t Xt = ΦtX0,

Proposition:

Any At such that (ΦT −R)Σ = 0 is a critical point

All critical points are global minimizers

∇J[A] = 0 ⇔ J[A] = min
V

J[V ] =: J∗

The optimality gap is upper-bounded by the gradient

‖∇J[A]‖2L2 ≥ Te−2
∫ T
0 ‖At‖F dt

λmin(Σ)(J[A]−J∗)

Result: Critical points (with regularization)

Proposition: The critical points are given by solutions to the characteristic
equation:

(λ > 0) : λC = eT CeT (C>−C)(R−eT (C−C>)eT C>)Σ

(λ = 0+) : eT (C−C>)eTC> = R (characteristic eq.)

And the weights are
At = et(C−C>)Ce−t(C−C>)

Corollary:

C is normal (C>C = CC>) ⇐⇒ At is constant

Example

Example: R is rotation matrix

Normal critical points:

C(λ ;n) =

[
0 −(π/2 + 2nπ)

π/2 + 2nπ 0

]
︸ ︷︷ ︸

log(R)

+O(λ ), n ∈ Z

Non-normal critical points: No result

Future work

Non-normal critical points

Second order analysis

Generalization error
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