Motivation

Deep learning
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Objective: Study the optimization problem in feedforward neural networks

This work: Analyze critical points of a linear network (with regularization)

Why linear network: They exhibit same behavior as nonlinear networks in
learning. They are easier to analyze.
A. M. Saxe, et. al. (2013) Exact solutions to the nonlinear dynamics ...
M. Hardt and T. Ma. (2016) |Identity matters in deep learning

S. Gunasekar, et. al. (2017) Implicit regularization in matrix factorization

Problem setup

Network model:
Linear continuous neural network
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Data: (Xp,Z) € R xRY
Model: Z= RX, + &
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linear model noise
Assumptions:

> .= E[XoX, ] is invertible
log(R) exists

Why continuous netowrk: Analysis is simpler and results are insightful
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Optimization problem

Optimal control formulation
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regularization mean-squared loss
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(A > 0) : Explicit regularization

0) : No regularization.

(A =07) : The limit as A — 0. Implicit regularization [B. Neyshabur, 2017]

Learning example

Example: R is a rotation matrix
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Questions:
What are the critical points that learning get stuck at?
Is the global minimizer always constant?

Why are some critical points constant and some not?

Approach: Optimal control theory

Hamiltonian function:

H(x,y,B)=y'Bx— %tr(BTB)

where x,y € R? and B € R9x¢

Pontryagin’s maximum principle: A;is the critical point iff there exists a
random process Y : [0, T] — R such that
dX; JH

(Forward eq) Tt — —i_&—y(Xta YtaAt) — _I_AtXt7 XO ~ [P0
Y, H
(Backward eq.) dd—tt — —?—(Xt, Yi,A) =AYy, Yr=Z-Xt
X N——
error

A; = argmax E[H(X;, Y:, B)| = 1E[YtXtT]
Be Md(R) A’

Result: Critical points (no regularization)

Definition: &; is the state transition matrix for %ff = AXi s.t Xi = DX,
Proposition:

Any A; such that (¢ — R)X =0 is a critical point

All critical points are global minimizers

VJIAlI=0 < JA= mJnJ[V] = J"
The optimality gap is upper-bounded by the gradient
|VIIA]Z, > Ter 200 1AlFdt o (5)(JA] - J)

Result: Critical points (with regularization)

Proposition: The critical points are given by solutions to the characteristic
equation:

(L>0): AC=eTCe’C O (R_gT(C-C)aTCHy
(A=07): eT(CC)eTC" — B (characteristic eq.)

And the weights are
A — et(C_CT)C e—t(C—CT)

Corollary:

Cisnormal (C'C=CC') <« A;is constant

Example

Example: R is rotation matrix
Normal critical points:
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Non-normal critical points: No result
Future work
Non-normal critical points

Second order analysis
Generalization error
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