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Optimal transport formulation of the Bayes law

Bayes law: P (X|Y ) =
P (X)P (Y |X)

P (Y )

= ∇xf̄(·;Y )#PX

where f̄ = argmin
f∈L1(X×Y)

E(X,Y )∼PX⊗PY
[f(X;Y )] + E(X,Y )∼PXY

[f⋆(X;Y )]

Computational properties:

Only requires samples (Xi, Yi) ∼ PXY (data-driven/simulation based)

Enables construction of “approximate” posterior distributions

Allows application of ML tools (stochastic optimization and neural nets)
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Numerical example
Approximation with input convex neural networks (ICNN)

X ∼ N(0, 1)

Y = X2 + σwW
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Outline

Background on the filtering problem

Variational Optimal Transport Particle Filters

Amirhossein Taghvaei 2 / 12 Amirhossein Taghvaei



Outline

Background on the filtering problem

Variational Optimal Transport Particle Filters

Amirhossein Taghvaei 2 / 12 Amirhossein Taghvaei



Nonlinear filtering problem
Mathematical model

Xk is the state (unknown)

Yk is the observation

dynamic and observation model are given

Questions: Given history of observation Y1:k := {Y1, . . . , Yk},
What is the most likely value of Xk?

What is the probability of Xk ∈ A?

What is the best m.s.e estimate for Xk?

. . .

Answer: given by the conditional distribution πk = P(Xk|Y1:k) (posterior, belief)

J. Xiong, An introduction to stochastic filtering theory, 2008
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Recursive update for posterior

In principle: given πk = P(Xk|Y1:k), obtain πk+1 = P(Xk+1|Y1:k+1) according to

Step 1: information update

πk = P(Xk|Y1:k)
Bayes law

−−−−→ π̃k = P(Xk|Y1:k+1)

Step 2: propagation update

π̃k = P(Xk|Y1:k+1)
dynamics

−−−−→ πk+1 = P(Xk+1|Y1:k+1)

In practice: No closed-form solution except special cases (linear-Gaussian)

Nonlinear filtering algorithm:

numerical approximation of πk

numerical implementation of the updates
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Kalman filter
Linear Gaussian setting

linear dynamics: Xk+1 = AXk +Bek

linear observation: Yk = HXK +Wk

Kalman filter: posterior πk is Gaussian N(mk,Σk)

Update for mean: mk+1 = Amk︸ ︷︷ ︸
dynamics

+Kk(Yk −Hmk)︸ ︷︷ ︸
correction

Update for variance: Σk+1 = (Ricatti equation)

application in navigation and guidance

fails to represent multi-modal distributions → particle filters

R. E. Kalman, A New Approach to Linear Filtering and Prediction Problems, 1960
R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction theory, 1961
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Particle filters
Monte-Carlo approximation

approximate πk with weighted empirical distribution of particles

apply the update rule to the particles and weights

Step 1: update the weights according to Bayes rule

wi
k+1 ∝ wi

kP (Yk|Xi
k)

Step 2: update particles according to the dynamics

Properties:

exact in the limit as N → ∞
weight degeneracy → curse of dimensionality

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
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Transport view point

suppose we have particles that represent samples from πk

we like to generate new set of particles that represent samples from πk+1

the dynamic update is straightforward, however, the Bayes update is challenging

Transport view-point: update particles with a transport map from πk to πk+1

Xi
k+1 = Tk(X

i
k)

Question: How to numerically approximate the transport map Tk?
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Ensemble Kalman filter (EnKF)
Example in the linear-Gaussian setting

linear observation: Yk = HXK +Wk

update law for the particles:

Xi
k+1 = Xi

k +K
(N)
k (Yk − Y i

k )

Y i
k = HXi

k +W i
k

where K(N) = Cov(Xi
k, Y

i
k )Cov(Y

i
k )

−1
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Curse of dimensionality
Linear Gaussian setting

Method 1: Ensemble Kalman filter

Method 2: standard particle filter

Compare number of particles to achieve error ϵ:

Question: How can we extend EnKF to nonlinear setting?

S. C. Surace, A. Kutschireiter, J. Pfister, How to avoid the curse of dimensionality: scalability of particle filters . . . , SIAM review, 2019
A. Taghvaei, P. G. Mehta, An optimal transport formulation of ensemble Kalman filter, (TAC) 2020
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Variational optimal transport filter

observation Yk ∼ h(·|Xk)

given particles {Xi
k}Ni=1 ∼ πk, generate

Y i
k ∼ h(·|Xi

k)

use {(Xi
k, Y

i
k )}Ni=1 to obtain f̄ by solving

min
f∈F

1

N

N∑
i=1

f(Xi
k;Y

σi
k ) +

1

N

N∑
i=1

f⋆(Xi
k;Y

i
k )

where F is a paramteric class of functions

Class of quadratic functions → Optimal Transport EnKF

Input convex neural networks

update the particles according to

Xi
k+1 = ∇f̄k(X

i
k, Yk)
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Derivation of the variational formula

We want to find a map T that transports PX to PX|Y with minimum cost

min
T

EX∼PX [∥T (X)−X∥2], s.t. T#PX = PX|Y

The Kantorovich dual formulation removes the constraint

min
f∈L1(X )

EX∼PX [f(X)] + EX∼PX|Y [f⋆(X)] but PX|Y is not available

Take expectation with respect to Y

min
f∈L1(X×Y)

E(X,Y )∼PX⊗PY
[f(X;Y )] + E(X,Y )∼PXY

[f⋆(X;Y )]

Theorem

Assume E[∥X∥2] < ∞ and PX admits density.
Then, the variational problem admits a unique solution f̄ that satisfies:

PX|Y = ∇xf̄(·;Y )#PX , (a.e.)
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EX∼PX [f(X)] + EX∼PX|Y [f⋆(X)] but PX|Y is not available

Take expectation with respect to Y

min
f∈L1(X×Y)

E(X,Y )∼PX⊗PY
[f(X;Y )] + E(X,Y )∼PXY

[f⋆(X;Y )]

Theorem

Assume E[∥X∥2] < ∞ and PX admits density.
Then, the variational problem admits a unique solution f̄ that satisfies:

PX|Y = ∇xf̄(·;Y )#PX , (a.e.)
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Summary

Mathematical model:

Nonlinear filtering: compute the posterior πk = P(Xk|Y1:k)

OT approach:

Variational problem:

Tk = ∇xf̄k, where f̄k = argmin
f∈F

J(N)(f ; {(Xi
k, Y

i
k )})

Optimal transportation methods in nonlinear filtering: The feedback particle filter, IEEE CSM, 2021
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