
Numerical Methods to Solve the Weighted Poisson Equation
Amirhossein Taghvaei, Prashant G. Mehta, Sean P. Meyn

University of Illinois at Urbana-Champaign, University of Florida
SIAM Conference on Uncertainty Quantification, Garden Grove, California, April, 2018

Problem statement

Weighted Poisson equation

− 1
ρ(x)
∇ · (ρ(x)∇φ(x)) = h(x)− ĥ

• ρ : Rd → R+ (prob. density)
• h : Rd → R (given function), ĥ :=

∫
h(x)ρ(x) dx

• φ : Rd → R (solution)
Problem:

Given: {X 1, . . . ,X N} i.i.d∼ ρ

Find: {∇φ(X 1), . . . ,∇φ(X N)}

Motivation: Nonlinear filtering

Ensemble Kalman filter (EnKF)

dX i
t = AX i

t dt + dBi
t︸ ︷︷ ︸

propagation

+ Kt dI i
t︸ ︷︷ ︸

update

Kt is the Kalman gain

Feedback particle filter (FPF)

dX i
t = a(X i

t ) dt + dBi
t︸ ︷︷ ︸

propagation

+ Kt(X i
t ) dI i

t︸ ︷︷ ︸
update

Kt = ∇φ where φ solves the Poisson eq.

• FPF is the generalization of the EnKF for nonlinear non-Gaussian setting
• Poisson equation is the generalization of the Kalman gain
[A. Taghvaei, J. de Wiljes, P. G. Mehta, and S. Reich, Kalman filter and its modern extensions for the
continuous-time nonlinear filtering problem, ASME, 2018 (To Appear)]

Motivation: Homotopy methods and optimal transportation

Problem

Given: {X 1
0 , . . . ,X

N
0 }

i.i.d∼ p0 (prior)

Generate: {X 1
t , . . . ,X

N
t }

i.i.d∼ pt ∝ p0e−h (posterior)

Solution

• Construct a discrete time process:

X i
n+1 = Tn(X i

n)

where Tn is the opt. transp. map between pn → pn+1

• Take the continuous-time limit:
dX i

t

dt
= ∇φ(X i

t )

where φ solves the Poisson eq.

Daum and Huang (2010- ); Moselhy and Marzouk (2012); Reich (2013); Heng, Doucet and Pokern (2015)
[A. Taghvaei, P. G. Mehta, Optimal transport formulation of the feedback particle filter, ACC, 2016]

Method: Two viewpoints, Two algorithms

1) PDE viewpoint:

〈∇φ,∇ψ〉 = 〈ψ,h − ĥ〉 ∀ψ ∈ H1(ρ)

where 〈f ,g〉 :=
∫

f (x)g(x)ρ(x) dx

Galerkin algorithm:
I Select basis functions {ψ1, . . . , ψM}

I Express φ(x) = c1ψ1(x) + . . . cMψM(x)

I Solve system of M linear equations for c

2) Stochastic viewpoint:

φ = Pεφ +

∫ ε

0
Ps(h − ĥ) ds

where {Pt} is the semigroup for ∆ρ := 1
ρ∇ · (ρ∇)

Kernel-based based algorithm:
I Approximate P with a Markov matrix

Tij = kε(X i,X j), for i , j = 1, . . . ,N

where kε is the diffusion map kernel [Coifman (2006)]

I Solve the fixed point equation φ = Tφ + εh iteratively

[A. Taghvaei, P. G. Mehta, Gain function approximation in the feedback particle filter, CDC, 2016]

Numerical result

Galerkin Algorithm
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Kernel-based Algorithm
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Error analysis

Galerkin Algorithm

Total error ≤ C‖h − ΠSh‖L2︸ ︷︷ ︸
Bias

+
1√
N
‖h‖∞

√√√√ M∑
m=1

1
λm︸ ︷︷ ︸

Variance

Kernel-based Algorithm

Total error ≤ O(ε)︸︷︷︸
Bias

+ O(
1

ε1+d/2
√

N
)︸ ︷︷ ︸

Variance

[A. Taghvaei, P. G. Mehta, S. P. meyn, Error Estimates for the Kernel Gain Function Approximation in the
Feedback Particle Filter, ACC, 2017]
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