EnKF for Control

Numerical Results

Extension to nonlinear setting

Ensemble Kalman Filter for Reinforcement Learning SIAM Conference on Uncertainty Quantification (UQ22)

Anant A. Joshi[†], Amirhossein Taghvaei^{*}, Prashant G. Mehta[†]

[†]University of Illinois at Urbana-Champaign ^{*}University of Washington, Seattle

April 14

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Outline

1 Introduction

2 EnKF for Control

3 Numerical Results

4 Extension to nonlinear setting

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Outline

1 Introduction

2 EnKF for Control

3 Numerical Results

4 Extension to nonlinear setting

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Problem Formulation

• The linear quadratic optimal control problem (LQR):

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

(backward Ricatti eq.) $\dot{P}_t = -A^{\top}P_t - P_tA - C^{\top}C + P_tBR^{-1}B^{\top}P_t, \quad P_T = P_f$

- Two issues with solving Ricatti directly:
 - (1) model parameters may not be known
 - (2) computationally $O(d^2)$ in the dimension *d* of the state-space
- Objective: design a controlled interacting particle systems

$$\dot{X}_t^i = f(X_t^i, u_t^i) + v_t^i, \quad \text{for} \quad i = 1, \dots, N$$

to approximately solve LQR using only a simulator $(x, u) \mapsto f(x, u)$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Problem Formulation

• The linear quadratic optimal control problem (LQR):

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

(backward Ricatti eq.) $\dot{P}_t = -A^{\top}P_t - P_tA - C^{\top}C + P_tBR^{-1}B^{\top}P_t, \quad P_T = P_f$

• Two issues with solving Ricatti directly:

- (1) model parameters may not be known
- (2) computationally $\mathcal{O}(d^2)$ in the dimension *d* of the state-space
- Objective: design a controlled interacting particle systems

$$\dot{X}_{t}^{i} = f(X_{t}^{i}, u_{t}^{i}) + v_{t}^{i}, \text{ for } i = 1, \dots, N$$

to approximately solve LQR using only a simulator $(x, u) \mapsto f(x, u)$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Problem Formulation

• The linear quadratic optimal control problem (LQR):

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

(backward Ricatti eq.) $\dot{P}_t = -A^{\top}P_t - P_tA - C^{\top}C + P_tBR^{-1}B^{\top}P_t, \quad P_T = P_f$

• Two issues with solving Ricatti directly:

- (1) model parameters may not be known
- (2) computationally $\mathcal{O}(d^2)$ in the dimension *d* of the state-space
- Objective: design a controlled interacting particle systems

$$\dot{X}_{t}^{i} = f(X_{t}^{i}, u_{t}^{i}) + v_{t}^{i}, \text{ for } i = 1, \dots, N$$

to approximately solve LQR using only a simulator $(x, u) \mapsto f(x, u)$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Problem Formulation

• The linear quadratic optimal control problem (LQR):

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

(backward Ricatti eq.) $\dot{P}_t = -A^{\top}P_t - P_tA - C^{\top}C + P_tBR^{-1}B^{\top}P_t, \quad P_T = P_f$

• Two issues with solving Ricatti directly:

- (1) model parameters may not be known
- (2) computationally $\mathcal{O}(d^2)$ in the dimension *d* of the state-space
- Objective: design a controlled interacting particle systems

$$\dot{X}_t^i = f(X_t^i, u_t^i) + v_t^i, \quad \text{for} \quad i = 1, \dots, N$$

to approximately solve LQR using only a simulator $(x,u)\mapsto f(x,u)$

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Related works

Reinforcement learning (RL) approaches:

- Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020) System ID + robust optimization
- Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)

(1) Assumes u = Kx and iteratively learns K using gradient descent

(2) Each iteration involves simulating

 $X_t^i = f(X_t^i, (K + \delta K^i) X_t^i), \quad \text{for} \quad i = 1, \dots, N$

to approximate the gradient of the cost with respect to K

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Related works

Reinforcement learning (RL) approaches:

- Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020) System ID + robust optimization
- Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)
 - (1) Assumes u = Kx and iteratively learns K using gradient descent
 - (2) Each iteration involves simulating

 $X_t^i = f(X_t^i, (K + \delta K^i) X_t^i), \quad \text{for} \quad i = 1, \dots, N$

to approximate the gradient of the cost with respect to K

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Related works

Reinforcement learning (RL) approaches:

- Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020) System ID + robust optimization
- Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)
 - (1) Assumes u = Kx and iteratively learns K using gradient descent
 - (2) Each iteration involves simulating

 $X_t^i = f(X_t^i, (K + \delta K^i) X_t^i), \quad \text{for} \quad i = 1, \dots, N$

to approximate the gradient of the cost with respect to K

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Related works

Reinforcement learning (RL) approaches:

- Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020) System ID + robust optimization
- Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)
 - (1) Assumes u = Kx and iteratively learns K using gradient descent
 - (2) Each iteration involves simulating

 $X_t^i = f(X_t^i, (K + \delta K^i)X_t^i), \text{ for } i = 1, \dots, N$

to approximate the gradient of the cost with respect to K

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Related works

Reinforcement learning (RL) approaches:

- Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020) System ID + robust optimization
- Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)
 - (1) Assumes u = Kx and iteratively learns K using gradient descent
 - (2) Each iteration involves simulating

 $X_t^i = f(X_t^i, (K + \delta K^i)X_t^i), \text{ for } i = 1, \dots, N$

to approximate the gradient of the cost with respect to K

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Our approach: EnKF type algorithm

• Simulate a controlled system of particles

$$\mathbf{d}X_t^i = \underbrace{f(X_t^i, \frac{\mathbf{d}\tilde{\eta}_t^i}{\mathbf{d}t}) \, \mathbf{d}t}_{\text{dynamics simulator}} + \underbrace{\frac{1}{2} \Sigma_t^{(N)} C^\top C X_t^i \, \mathbf{d}t}_{\text{RL correction}}, \quad X_T^i \overset{\text{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

where
$$\Sigma_t^{(N)} = \frac{1}{N} \sum_{i=1}^N X_t^i (X_t^i)^\top$$
 and $\overleftarrow{\eta}_t^i$ is a backward Wiener process

- Solution to the Ricatti eq. is approximated using empirical covariance $\Sigma_t^{(N)}$
- Computationally more efficient in comparison to related works

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Our approach: EnKF type algorithm

• Simulate a controlled system of particles

$$\mathbf{d}X_t^i = \underbrace{f(X_t^i, \frac{\mathbf{d}\tilde{\eta}_t^i}{\mathbf{d}t}) \, \mathbf{d}t}_{\text{dynamics simulator}} + \underbrace{\frac{1}{2} \Sigma_t^{(N)} C^\top C X_t^i \, \mathbf{d}t}_{\text{RL correction}}, \quad X_T^i \overset{\text{i.i.d}}{\sim} \mathcal{N}(\mathbf{0}, P_T^{-1})$$

where $\Sigma_t^{(N)} = \frac{1}{N} \sum_{i=1}^N X_t^i (X_t^i)^\top$ and $\overleftarrow{\eta}_t^i$ is a backward Wiener process

- Solution to the Ricatti eq. is approximated using empirical covariance $\Sigma_t^{(N)}$
- Computationally more efficient in comparison to related works

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Our approach: EnKF type algorithm

• Simulate a controlled system of particles

$$\mathbf{d}X_t^i = \underbrace{f(X_t^i, \frac{\mathbf{d}\overline{\eta}_t^i}{\mathbf{d}t}) \, \mathbf{d}t}_{\text{dynamics simulator}} + \underbrace{\frac{1}{2} \Sigma_t^{(N)} C^\top C X_t^i \, \mathbf{d}t}_{\text{RL correction}}, \quad X_T^i \overset{\text{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

where $\Sigma_t^{(N)} = \frac{1}{N} \sum_{i=1}^N X_t^i (X_t^i)^\top$ and $\overleftarrow{\eta}_t^i$ is a backward Wiener process

- Solution to the Ricatti eq. is approximated using empirical covariance $\Sigma_t^{(N)}$
- Computationally more efficient in comparison to related works

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Outline

1 Introduction

2 EnKF for Control

3 Numerical Results

4 Extension to nonlinear setting

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Review of EnKF for filtering

• Linear Gaussian filtering problem: find the conditional dist. $P(X_t|\mathcal{Z}_t)$

$$dX_t = AX_t dt + Q^{\frac{1}{2}} d\xi_t =: f(X_t, \xi_t)$$
$$dZ_t = HX_t dt + \mathcal{R}^{\frac{1}{2}} dW_t$$

• Kalman-Bucy filter: conditional dist. is Gaussian $N(m_t, \Sigma_t)$

$$dm_t = Am_t dt + \Sigma_t H^\top \mathcal{R}^{-1} (dZ_t - Hm_t dt), \quad m_0 = \mathsf{E}(X_0)$$
$$\dot{\Sigma}_t = A\Sigma_t + \Sigma_t A^\top + Q - \Sigma_t H^\top \mathcal{R}^{-1} H\Sigma_t, \quad \Sigma_0 = \mathsf{var}(X_0)$$

- EnKF algorithm:
 - Construct a stochastic process \bar{X}_t such that

$$\operatorname{Law}(\bar{X}_t) = N(m_t, \Sigma_t)$$

• Realize \bar{X}_t with a system of interacting particles $\{X_t^1, \ldots, X_t^N\}$ s.t.

$$\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}\approx \operatorname{Law}(\bar{X}_{t})$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Review of EnKF for filtering

• Linear Gaussian filtering problem: find the conditional dist. $P(X_t|\mathcal{Z}_t)$

$$dX_t = AX_t dt + Q^{\frac{1}{2}} d\xi_t =: f(X_t, \xi_t)$$
$$dZ_t = HX_t dt + \mathcal{R}^{\frac{1}{2}} dW_t$$

• Kalman-Bucy filter: conditional dist. is Gaussian $N(m_t, \Sigma_t)$

$$dm_t = Am_t dt + \Sigma_t H^\top \mathcal{R}^{-1} (dZ_t - Hm_t dt), \quad m_0 = \mathsf{E}(X_0)$$
$$\dot{\Sigma}_t = A\Sigma_t + \Sigma_t A^\top + Q - \Sigma_t H^\top \mathcal{R}^{-1} H \Sigma_t, \quad \Sigma_0 = \mathsf{var}(X_0)$$

- EnKF algorithm:
 - Construct a stochastic process \bar{X}_t such that

$$\operatorname{Law}(\bar{X}_t) = N(m_t, \Sigma_t)$$

• Realize \bar{X}_t with a system of interacting particles $\{X_t^1, \ldots, X_t^N\}$ s.t.

$$\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}\approx \operatorname{Law}(\bar{X}_{t})$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Review of EnKF for filtering

• Linear Gaussian filtering problem: find the conditional dist. $P(X_t|\mathcal{Z}_t)$

$$dX_t = AX_t dt + Q^{\frac{1}{2}} d\xi_t =: f(X_t, \xi_t)$$
$$dZ_t = HX_t dt + \mathcal{R}^{\frac{1}{2}} dW_t$$

• Kalman-Bucy filter: conditional dist. is Gaussian $N(m_t, \Sigma_t)$

$$dm_t = Am_t dt + \Sigma_t H^\top \mathcal{R}^{-1} (dZ_t - Hm_t dt), \quad m_0 = \mathsf{E}(X_0)$$
$$\dot{\Sigma}_t = A\Sigma_t + \Sigma_t A^\top + Q - \Sigma_t H^\top \mathcal{R}^{-1} H \Sigma_t, \quad \Sigma_0 = \mathsf{var}(X_0)$$

- EnKF algorithm:
 - Construct a stochastic process \bar{X}_t such that

$$\operatorname{Law}(\bar{X}_t) = N(m_t, \Sigma_t)$$

• Realize \bar{X}_t with a system of interacting particles $\{X_t^1, \ldots, X_t^N\}$ s.t.

$$\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}\approx \operatorname{Law}(\bar{X}_{t})$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

Review of EnKF: mean-field process and particle system

• Mean-field process:

$$\mathrm{d}\bar{X}_{t} = \underbrace{f(\bar{X}_{t}, \bar{\xi}_{t})}_{\mathrm{dynamics}} + \underbrace{\bar{\Sigma}_{t} H^{\top} \mathcal{R}^{-1}(\,\mathrm{d}Z_{t} - \frac{H\bar{X}_{t} + H\bar{m}_{t}}{2}\,\mathrm{d}t)}_{\mathrm{feedback correction}}, \quad \bar{X}_{0} \sim \mathcal{N}(m_{0}, \Sigma_{0})$$

where $\bar{m}_t := \mathsf{E}[\bar{X}_t | \mathcal{Z}_t]$ and $\bar{\Sigma}_t := \mathsf{var}(\bar{X}_t | \mathcal{Z}_t)$

• **Exactness:** Law $(\bar{X}_t) = N(m_t, \Sigma_t)$ given by the Kalman filter. In particular,

$$\bar{m}_t = m_t, \quad \bar{\Sigma}_t = \Sigma_t$$

• Particle system:

$$dX_t^i = f(X_t^i, \xi_t^i) + \Sigma_t^{(N)} H^\top \mathcal{R}^{-1} (dZ_t - \frac{HX_t^i + Hm_t^{(N)}}{2} dt), \quad X_0^i \sim \mathcal{N}(m_0, \Sigma_0)$$

where $m_t^{(N)}$ and $\Sigma_t^{(N)}$ are empirical approximations of \bar{m}_t and $\bar{\Sigma}_t$

• Approximation error: Under suitable assumptions, we have

$$\mathsf{E}[\|m_t^{(N)} - m_t\|^2] \le \frac{(\text{const.})}{N}, \quad \mathsf{E}[\|\Sigma_t^{(N)} - \Sigma_t\|^2] \le \frac{(\text{const.})}{N}$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

Review of EnKF: mean-field process and particle system

• Mean-field process:

$$\mathrm{d}\bar{X}_{t} = \underbrace{f(\bar{X}_{t}, \bar{\xi}_{t})}_{\mathrm{dynamics}} + \underbrace{\bar{\Sigma}_{t} H^{\top} \mathcal{R}^{-1}(\mathrm{d}Z_{t} - \frac{H\bar{X}_{t} + H\bar{m}_{t}}{2} \mathrm{d}t)}_{\mathrm{feedback \ correction}}, \quad \bar{X}_{0} \sim \mathcal{N}(m_{0}, \Sigma_{0})$$

where $\bar{m}_t := \mathsf{E}[\bar{X}_t | \mathcal{Z}_t]$ and $\bar{\Sigma}_t := \mathsf{var}(\bar{X}_t | \mathcal{Z}_t)$

• **Exactness:** Law(\bar{X}_t) = $N(m_t, \Sigma_t)$ given by the Kalman filter. In particular,

$$\bar{m}_t = m_t, \quad \bar{\Sigma}_t = \Sigma_t$$

• Particle system:

$$dX_t^i = f(X_t^i, \xi_t^i) + \Sigma_t^{(N)} H^\top \mathcal{R}^{-1} (dZ_t - \frac{HX_t^i + Hm_t^{(N)}}{2} dt), \quad X_0^i \sim \mathcal{N}(m_0, \Sigma_0)$$

where $m_t^{(N)}$ and $\Sigma_t^{(N)}$ are empirical approximations of \bar{m}_t and $\bar{\Sigma}_t$

• Approximation error: Under suitable assumptions, we have

$$\mathsf{E}[\|m_t^{(N)} - m_t\|^2] \le \frac{(\text{const.})}{N}, \quad \mathsf{E}[\|\Sigma_t^{(N)} - \Sigma_t\|^2] \le \frac{(\text{const.})}{N}$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

Review of EnKF: mean-field process and particle system

• Mean-field process:

$$\mathrm{d}\bar{X}_{t} = \underbrace{f(\bar{X}_{t}, \bar{\xi}_{t})}_{\mathrm{dynamics}} + \underbrace{\bar{\Sigma}_{t} H^{\top} \mathcal{R}^{-1}(\,\mathrm{d}Z_{t} - \frac{H\bar{X}_{t} + H\bar{m}_{t}}{2}\,\mathrm{d}t)}_{\mathrm{feedback \ correction}}, \quad \bar{X}_{0} \sim \mathcal{N}(m_{0}, \Sigma_{0})$$

where $\bar{m}_t := \mathsf{E}[\bar{X}_t | \mathcal{Z}_t]$ and $\bar{\Sigma}_t := \mathsf{var}(\bar{X}_t | \mathcal{Z}_t)$

• **Exactness:** Law(\bar{X}_t) = $N(m_t, \Sigma_t)$ given by the Kalman filter. In particular,

$$\bar{m}_t = m_t, \quad \bar{\Sigma}_t = \Sigma_t$$

• Particle system:

$$\mathrm{d}X_t^i = f(X_t^i, \xi_t^i) + \Sigma_t^{(N)} H^\top \mathcal{R}^{-1} (\,\mathrm{d}Z_t - \frac{HX_t^i + Hm_t^{(N)}}{2}\,\mathrm{d}t), \quad X_0^i \sim \mathcal{N}(m_0, \Sigma_0)$$

where $m_t^{(N)}$ and $\Sigma_t^{(N)}$ are empirical approximations of \bar{m}_t and $\bar{\Sigma}_t$.

• Approximation error: Under suitable assumptions, we have

$$\mathsf{E}[\|m_t^{(N)} - m_t\|^2] \le \frac{(\text{const.})}{N}, \quad \mathsf{E}[\|\Sigma_t^{(N)} - \Sigma_t\|^2] \le \frac{(\text{const.})}{N}$$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

Review of EnKF: mean-field process and particle system

• Mean-field process:

$$\mathrm{d}\bar{X}_{t} = \underbrace{f(\bar{X}_{t}, \bar{\xi}_{t})}_{\mathrm{dynamics}} + \underbrace{\bar{\Sigma}_{t} H^{\top} \mathcal{R}^{-1}(\mathrm{d}Z_{t} - \frac{H\bar{X}_{t} + H\bar{m}_{t}}{2} \mathrm{d}t)}_{\mathrm{feedback \ correction}}, \quad \bar{X}_{0} \sim \mathcal{N}(m_{0}, \Sigma_{0})$$

where $\bar{m}_t := \mathsf{E}[\bar{X}_t | \mathcal{Z}_t]$ and $\bar{\Sigma}_t := \mathsf{var}(\bar{X}_t | \mathcal{Z}_t)$

• **Exactness:** Law(\bar{X}_t) = $N(m_t, \Sigma_t)$ given by the Kalman filter. In particular,

$$\bar{m}_t = m_t, \quad \bar{\Sigma}_t = \Sigma_t$$

• Particle system:

$$\mathrm{d}X_t^i = f(X_t^i, \xi_t^i) + \Sigma_t^{(N)} H^\top \mathcal{R}^{-1} (\,\mathrm{d}Z_t - \frac{HX_t^i + Hm_t^{(N)}}{2} \,\mathrm{d}t), \quad X_0^i \sim \mathcal{N}(m_0, \Sigma_0)$$

where $m_t^{(N)}$ and $\Sigma_t^{(N)}$ are empirical approximations of \bar{m}_t and $\bar{\Sigma}_t$.

• Approximation error: Under suitable assumptions, we have

$$\mathsf{E}[\|m_t^{(N)} - m_t\|^2] \le \frac{(\text{const.})}{N}, \quad \mathsf{E}[\|\Sigma_t^{(N)} - \Sigma_t\|^2] \le \frac{(\text{const.})}{N}$$

EnKF for Control: Attempt I

- EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
- Can we extend EnKF to simulate the Ricatti eq. in LQR:

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt I: Construct a stochastic process with variance equal to *P_t*

$$\mathrm{d}\bar{X}_t = -A^\top \bar{X}_t \,\mathrm{d}t + C^\top \,\mathrm{d}\hat{\eta}_t + \frac{1}{2}\bar{\Sigma}_t B R^{-1} B^\top \bar{X}_t, \quad \bar{X}_T \sim N(0, P_f)$$

where $\bar{\Sigma}_t = \mathsf{E}[\bar{X}_t \bar{X}_t^{\top}]$ and $\overleftarrow{\eta}$ is a backward Wiener process

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = -A^\top \bar{\Sigma}_t - \bar{\Sigma}_t A - C^\top C + \bar{\Sigma}_t B R^{-1} B^\top \bar{\Sigma}_t, \quad \Sigma_T = P_f$$

Identical to Ricatti eq for P_t , therefore $\bar{\Sigma}_t = P_t$

• However, it can not be implemented using a simulator since A^{\top} is not available.

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt I

- EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
- Can we extend EnKF to simulate the Ricatti eq. in LQR:

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt I: Construct a stochastic process with variance equal to *P_t*

$$\mathrm{d}\bar{X}_t = -A^\top \bar{X}_t \,\mathrm{d}t + C^\top \,\mathrm{d}\hat{\eta}_t + \frac{1}{2}\bar{\Sigma}_t B R^{-1} B^\top \bar{X}_t, \quad \bar{X}_T \sim N(0, P_f)$$

where $\bar{\Sigma}_t = \mathsf{E}[\bar{X}_t \bar{X}_t^{\top}]$ and $\overleftarrow{\eta}$ is a backward Wiener process

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = -A^\top \bar{\Sigma}_t - \bar{\Sigma}_t A - C^\top C + \bar{\Sigma}_t B R^{-1} B^\top \bar{\Sigma}_t, \quad \Sigma_T = P_f$$

Identical to Ricatti eq for P_t , therefore $\overline{\Sigma}_t = P_t$

• However, it can not be implemented using a simulator since A^{\top} is not available.

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt I

- EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
- Can we extend EnKF to simulate the Ricatti eq. in LQR:

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt I: Construct a stochastic process with variance equal to P_t

$$\mathrm{d}\bar{X}_t = -A^\top \bar{X}_t \,\mathrm{d}t + C^\top \,\mathrm{d}\bar{\eta}_t + \frac{1}{2}\bar{\Sigma}_t B R^{-1} B^\top \bar{X}_t, \quad \bar{X}_T \sim N(0, P_f)$$

where $\bar{\Sigma}_t = \mathsf{E}[\bar{X}_t \bar{X}_t^{\top}]$ and $\overleftarrow{\eta}$ is a backward Wiener process

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = -A^\top \bar{\Sigma}_t - \bar{\Sigma}_t A - C^\top C + \bar{\Sigma}_t B R^{-1} B^\top \bar{\Sigma}_t, \quad \Sigma_T = P_f$$

Identical to Ricatti eq for P_t , therefore $\overline{\Sigma}_t = P_t$

• However, it can not be implemented using a simulator since A^{\top} is not available.

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt I

- EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
- Can we extend EnKF to simulate the Ricatti eq. in LQR:

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt I: Construct a stochastic process with variance equal to P_t

$$\mathrm{d}\bar{X}_t = -A^\top \bar{X}_t \,\mathrm{d}t + C^\top \,\mathrm{d}\bar{\eta}_t + \frac{1}{2}\bar{\Sigma}_t B R^{-1} B^\top \bar{X}_t, \quad \bar{X}_T \sim N(0, P_f)$$

where $\bar{\Sigma}_t = \mathsf{E}[\bar{X}_t \bar{X}_t^{\top}]$ and $\overleftarrow{\eta}$ is a backward Wiener process

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = -A^{\top}\bar{\Sigma}_t - \bar{\Sigma}_t A - C^{\top}C + \bar{\Sigma}_t B R^{-1} B^{\top}\bar{\Sigma}_t, \quad \Sigma_T = P_f$$

Identical to Ricatti eq for P_t , therefore $\bar{\Sigma}_t = P_t$

 However, it can not be implemented using a simulator since A[⊤] is not available.

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt I

- EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
- Can we extend EnKF to simulate the Ricatti eq. in LQR:

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt I: Construct a stochastic process with variance equal to P_t

$$\mathrm{d}\bar{X}_t = -A^\top \bar{X}_t \,\mathrm{d}t + C^\top \,\mathrm{d}\bar{\eta}_t + \frac{1}{2}\bar{\Sigma}_t B R^{-1} B^\top \bar{X}_t, \quad \bar{X}_T \sim N(0, P_f)$$

where $\bar{\Sigma}_t = \mathsf{E}[\bar{X}_t \bar{X}_t^{\top}]$ and $\overleftarrow{\eta}$ is a backward Wiener process

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = -A^{\top}\bar{\Sigma}_t - \bar{\Sigma}_t A - C^{\top}C + \bar{\Sigma}_t B R^{-1} B^{\top}\bar{\Sigma}_t, \quad \Sigma_T = P_f$$

Identical to Ricatti eq for P_t , therefore $\bar{\Sigma}_t = P_t$

However, it can not be implemented using a simulator since A[⊤] is not available.

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt II: Define $S_t = P_t^{-1}$ which solves the eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}S_t = AS_t + S_t A^\top - BR^{-1}B^\top + S_t C^\top CS_t, \quad S_T = P_T^{-1}$$

• Construct a stochastic process with variance equal to S_t

$$\mathrm{d}\bar{X}_t = A\bar{X}_t\,\mathrm{d}t + B\,\mathrm{d}\hat{\eta}_t + \frac{1}{2}\bar{\Sigma}_t C^\top C\bar{X}_t\,\mathrm{d}t, \quad \bar{X}_T \sim N(0, P_T^{-1})$$

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = A\bar{\Sigma}_t + \bar{\Sigma}_t A^\top - BR^{-1}B^\top + \bar{\Sigma}_t C^\top C\bar{\Sigma}_t, \quad \Sigma_T = S_T$$

Identical to equation for S_t . Therefore, $P_t = S_t^{-1} = \overline{\Sigma}_t^{-1}$

• It can be implemented using a simulator

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt II: Define $S_t = P_t^{-1}$ which solves the eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}S_t = AS_t + S_t A^\top - BR^{-1}B^\top + S_t C^\top CS_t, \quad S_T = P_T^{-1}$$

• Construct a stochastic process with variance equal to *S*_t

$$\mathrm{d}\bar{X}_t = A\bar{X}_t \,\mathrm{d}t + B \,\mathrm{d}\hat{\eta}_t + \frac{1}{2}\bar{\Sigma}_t C^\top C\bar{X}_t \,\mathrm{d}t, \quad \bar{X}_T \sim N(0, P_T^{-1})$$

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = A\bar{\Sigma}_t + \bar{\Sigma}_t A^\top - BR^{-1}B^\top + \bar{\Sigma}_t C^\top C\bar{\Sigma}_t, \quad \Sigma_T = S_T$$

Identical to equation for S_t . Therefore, $P_t = S_t^{-1} = \overline{\Sigma}_t^{-1}$

• It can be implemented using a simulator

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt II: Define $S_t = P_t^{-1}$ which solves the eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}S_t = AS_t + S_t A^\top - BR^{-1}B^\top + S_t C^\top CS_t, \quad S_T = P_T^{-1}$$

• Construct a stochastic process with variance equal to S_t

$$\mathrm{d}\bar{X}_t = A\bar{X}_t\,\mathrm{d}t + B\,\mathrm{d}\tilde{\eta}_t + \frac{1}{2}\bar{\Sigma}_t C^\top C\bar{X}_t\,\mathrm{d}t, \quad \bar{X}_T \sim N(0, P_T^{-1})$$

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = A\bar{\Sigma}_t + \bar{\Sigma}_t A^\top - BR^{-1}B^\top + \bar{\Sigma}_t C^\top C\bar{\Sigma}_t, \quad \Sigma_T = S_T$$

Identical to equation for S_t . Therefore, $P_t = S_t^{-1} = \overline{\Sigma}_t^{-1}$

• It can be implemented using a simulator

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt II: Define $S_t = P_t^{-1}$ which solves the eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}S_t = AS_t + S_t A^\top - BR^{-1}B^\top + S_t C^\top CS_t, \quad S_T = P_T^{-1}$$

• Construct a stochastic process with variance equal to S_t

$$\mathrm{d}\bar{X}_t = A\bar{X}_t\,\mathrm{d}t + B\,\mathrm{d}\tilde{\eta}_t + \frac{1}{2}\bar{\Sigma}_t C^\top C\bar{X}_t\,\mathrm{d}t, \quad \bar{X}_T \sim N(0, P_T^{-1})$$

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = A\bar{\Sigma}_t + \bar{\Sigma}_t A^\top - BR^{-1}B^\top + \bar{\Sigma}_t C^\top C\bar{\Sigma}_t, \quad \Sigma_T = S_T$$

Identical to equation for S_t . Therefore, $P_t = S_t^{-1} = \overline{\Sigma}_t^{-1}$

• It can be implemented using a simulator

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• Attempt II: Define $S_t = P_t^{-1}$ which solves the eq.

$$\frac{\mathrm{d}}{\mathrm{d}t}S_t = AS_t + S_t A^\top - BR^{-1}B^\top + S_t C^\top CS_t, \quad S_T = P_T^{-1}$$

• Construct a stochastic process with variance equal to S_t

$$\mathrm{d}\bar{X}_t = A\bar{X}_t\,\mathrm{d}t + B\,\mathrm{d}\tilde{\eta}_t + \frac{1}{2}\bar{\Sigma}_t C^\top C\bar{X}_t\,\mathrm{d}t, \quad \bar{X}_T \sim N(0, P_T^{-1})$$

• Using the Itö rule for backward process:

$$\frac{\mathrm{d}}{\mathrm{d}t}\bar{\Sigma}_t = A\bar{\Sigma}_t + \bar{\Sigma}_t A^\top - BR^{-1}B^\top + \bar{\Sigma}_t C^\top C\bar{\Sigma}_t, \quad \Sigma_T = S_T$$

Identical to equation for S_t . Therefore, $P_t = S_t^{-1} = \overline{\Sigma}_t^{-1}$

• It can be implemented using a simulator

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for control: Particle system

Particle system:

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + B \,\mathrm{d}\tilde{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

- It can be implemented using only a simulator f(x, u) = Ax + Bu
- The dynamics resembles the exploration and exploration terms
- It does not require initialization with stabilizing gain
- It can be used for both finite and infinite horizon settings

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for control: Particle system

Particle system:

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + B \,\mathrm{d}\tilde{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

- It can be implemented using only a simulator f(x, u) = Ax + Bu
- The dynamics resembles the exploration and exploration terms
- It does not require initialization with stabilizing gain
- It can be used for both finite and infinite horizon settings

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for control: Particle system

Particle system:

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + B \,\mathrm{d}\tilde{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

- It can be implemented using only a simulator f(x, u) = Ax + Bu
- The dynamics resembles the exploration and exploration terms
- It does not require initialization with stabilizing gain
- It can be used for both finite and infinite horizon settings

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for control: Particle system

Particle system:

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + B \,\mathrm{d}\tilde{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

- It can be implemented using only a simulator f(x, u) = Ax + Bu
- The dynamics resembles the exploration and exploration terms
- It does not require initialization with stabilizing gain
- It can be used for both finite and infinite horizon settings

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

EnKF for control: Particle system

Particle system:

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + B \,\mathrm{d}\tilde{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

- It can be implemented using only a simulator f(x, u) = Ax + Bu
- The dynamics resembles the exploration and exploration terms
- It does not require initialization with stabilizing gain
- It can be used for both finite and infinite horizon settings

EnKF for Control

Numerical Results

Extension to nonlinear setting

EnKF for control: summary

• Optimal control problem

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2}U_t^\top RU_t\right) dt + \frac{1}{2}X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Exact solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• EnKF algorithm: approximate $P_t \approx (\frac{1}{N} \sum_{i=1}^{N} X_t^i (X_t^i)^{\top})^{-1}$ where

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + BR^{\frac{1}{2}} \,\mathrm{d}\bar{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

EnKF for Control

Numerical Results

Extension to nonlinear setting

EnKF for control: summary

• Optimal control problem

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Exact solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• EnKF algorithm: approximate $P_t \approx (\frac{1}{N} \sum_{i=1}^N X_t^i (X_t^i)^{\top})^{-1}$ where

$$\mathrm{d}X_t^i = \underbrace{AX_t^i \,\mathrm{d}t + BR^{\frac{1}{2}} \,\mathrm{d}\overline{\eta}_t^i}_{\mathrm{dynamics simulator}} + \underbrace{\frac{1}{2}\Sigma_t^{(N)} C^\top(CX_t^i - 0) \,\mathrm{d}t}_{\mathrm{RL \ correction}}, \quad X_T^i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0, P_T^{-1})$$

EnKF for Control

Numerical Results

Extension to nonlinear setting

EnKF for control: summary

• Optimal control problem

minimize
$$\int_0^T \left(\frac{1}{2} \|CX_t\|^2 + \frac{1}{2} U_t^\top R U_t\right) dt + \frac{1}{2} X_T^\top P_f X_T$$

subject to $\dot{X}_t = AX_t + BU_t =: f(X_t, U_t)$

• Exact solution: $U_t = -R^{-1}B^{\top}P_tX_t$ where P_t solves

$$\dot{P}_t = -A^\top P_t - P_t A - C^\top C + P_t B R^{-1} B^\top P_t, \quad P_T = P_f$$

• EnKF algorithm: approximate $P_t \approx (\frac{1}{N} \sum_{i=1}^{N} X_t^i (X_t^i)^{\top})^{-1}$ where

$$\mathbf{d}X_t^i = \underbrace{AX_t^i \, \mathbf{d}t + BR^{\frac{1}{2}} \, \mathbf{d}\overline{\eta}_t^i}_{\text{dynamics simulator}} + \underbrace{\frac{1}{2} \Sigma_t^{(N)} C^\top(CX_t^i - \mathbf{0}) \, \mathbf{d}t}_{\text{RL correction}}, \quad X_T^i \overset{\text{i.i.d}}{\sim} \mathcal{N}(\mathbf{0}, P_T^{-1})$$

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Outline

1 Introduction

2 EnKF for Control

3 Numerical Results

4 Extension to nonlinear setting

EnKF for Control

Numerical Results

Extension to nonlinear setting

Numerical error analysis

Error as a function of number of particles N and the state dimension d

$$\operatorname{error} = \mathsf{E}[\|K_{t_f}^{(N)} - K_{t_f}\|^2]$$

EnKF for Control

Numerical Results

Extension to nonlinear setting 0000

Cart-pole example

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Control

Numerical Results

Extension to nonlinear setting

Outline

1 Introduction

2 EnKF for Control

3 Numerical Results

EnKF for Contro

Numerical Results

Extension to nonlinear setting OOOO

A nonlinear extension

• Optimal control problem:

minimize
$$\mathsf{E}\left[\int_{0}^{T} \left(\frac{1}{2}c(X_{t}) + \frac{1}{2}U_{t}^{2}\right) \, \mathrm{d}t + g(X_{T})\right]$$
subject to $\mathrm{d}X_{t} = a(X_{t}) \, \mathrm{d}t + b(X_{t})(U_{t} \, \mathrm{d}t + \mathrm{d}\xi_{t})$

- This is a control affine system
- Each control channel is corrupted by additive Gaussian noise ξ_t
- Exact solution can be obtained using dynamic programming:

$$U_t = -b(X_t)\nabla v_t(X_t)$$

where $v_t(x)$ is the value function that solves the (nonlinear) HJB eq.

$$\frac{\partial v_t}{\partial t} + \mathcal{H}(v_t) = 0, \quad v_T = g$$

• Can we have an EnKF type algorithm to solve the HJB eq?

EnKF for Contro

Numerical Results

Extension to nonlinear setting OOOO

A nonlinear extension

• Optimal control problem:

minimize
$$\mathsf{E}\left[\int_{0}^{T}\left(\frac{1}{2}c(X_{t})+\frac{1}{2}U_{t}^{2}\right)\,\mathrm{d}t+g(X_{T})\right]$$

subject to $\mathrm{d}X_{t}=a(X_{t})\,\mathrm{d}t+b(X_{t})(U_{t}\,\mathrm{d}t+\mathrm{d}\xi_{t})$

• This is a control affine system

- Each control channel is corrupted by additive Gaussian noise ξ_t
- Exact solution can be obtained using dynamic programming:

$$U_t = -b(X_t)\nabla v_t(X_t)$$

where $v_t(x)$ is the value function that solves the (nonlinear) HJB eq.

$$\frac{\partial v_t}{\partial t} + \mathcal{H}(v_t) = 0, \quad v_T = g$$

• Can we have an EnKF type algorithm to solve the HJB eq?

EnKF for Contro

Numerical Results

Extension to nonlinear setting OOOO

A nonlinear extension

• Optimal control problem:

minimize
$$\mathsf{E}\left[\int_{0}^{T}\left(\frac{1}{2}c(X_{t})+\frac{1}{2}U_{t}^{2}\right)\,\mathrm{d}t+g(X_{T})\right]$$

subject to $\mathrm{d}X_{t}=a(X_{t})\,\mathrm{d}t+b(X_{t})(U_{t}\,\mathrm{d}t+\mathrm{d}\xi_{t})$

- This is a control affine system
- Each control channel is corrupted by additive Gaussian noise ξ_t
- Exact solution can be obtained using dynamic programming:

$$U_t = -b(X_t)\nabla v_t(X_t)$$

where $v_t(x)$ is the value function that solves the (nonlinear) HJB eq.

$$\frac{\partial v_t}{\partial t} + \mathcal{H}(v_t) = 0, \quad v_T = g$$

• Can we have an EnKF type algorithm to solve the HJB eq?

EnKF for Contro

Numerical Results

Extension to nonlinear setting OOOO

A nonlinear extension

• Optimal control problem:

minimize
$$\mathsf{E}\left[\int_{0}^{T}\left(\frac{1}{2}c(X_{t})+\frac{1}{2}U_{t}^{2}\right)\,\mathrm{d}t+g(X_{T})\right]$$

subject to $\mathrm{d}X_{t}=a(X_{t})\,\mathrm{d}t+b(X_{t})(U_{t}\,\mathrm{d}t+\mathrm{d}\xi_{t})$

- This is a control affine system
- Each control channel is corrupted by additive Gaussian noise ξ_t
- Exact solution can be obtained using dynamic programming:

$$U_t = -b(X_t)\nabla v_t(X_t)$$

where $v_t(x)$ is the value function that solves the (nonlinear) HJB eq.

$$rac{\partial v_t}{\partial t} + \mathcal{H}(v_t) = \mathbf{0}, \quad v_T = g$$

• Can we have an EnKF type algorithm to solve the HJB eq?

EnKF for Contro

Numerical Results

Extension to nonlinear setting OOOO

A nonlinear extension

• Optimal control problem:

minimize
$$\mathsf{E}\left[\int_{0}^{T}\left(\frac{1}{2}c(X_{t})+\frac{1}{2}U_{t}^{2}\right)\,\mathrm{d}t+g(X_{T})\right]$$

subject to $\mathrm{d}X_{t}=a(X_{t})\,\mathrm{d}t+b(X_{t})(U_{t}\,\mathrm{d}t+\mathrm{d}\xi_{t})$

- This is a control affine system
- Each control channel is corrupted by additive Gaussian noise ξ_t
- Exact solution can be obtained using dynamic programming:

$$U_t = -b(X_t)\nabla v_t(X_t)$$

where $v_t(x)$ is the value function that solves the (nonlinear) HJB eq.

$$\frac{\partial v_t}{\partial t} + \mathcal{H}(v_t) = \mathbf{0}, \quad v_T = g$$

• Can we have an EnKF type algorithm to solve the HJB eq?

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Log-transformation

• Define the probability $p_t(x) \propto e^{-v_t(x)}$ which solves the pde

$$\frac{\partial p_t}{\partial t} = -\underbrace{\nabla(p_t(a+\nabla b^2))}_{\text{drift term}} - \underbrace{\frac{1}{2}\nabla^2(p_t b^2)}_{\text{diffusion}} + p_t(h-\hat{h}_t), \quad p_T \propto e^{-g}$$

where
$$h := \frac{1}{2}c + \nabla a$$
 and $\hat{h}_t := \int h(x)p_t(x) \, \mathrm{d}x$

• Construct a stochastic process \bar{X}_t so that $Law(\bar{X}_t) = p_t$:

$$\mathrm{d}\bar{X}_t = a(\bar{X}_t)\,\mathrm{d}t + b(\bar{X}_t)\,\mathrm{d}\dot{\eta}_t + \nabla b^2(\bar{X}_t)\,\mathrm{d}t + \nabla \phi_t(\bar{X}_t)\,\mathrm{d}t$$

where $\overleftarrow{\eta}$ is backward Wiener process and ϕ_t solves the Poisson eq.

Poisson eq.:
$$-\frac{1}{\bar{p}_t(x)} \nabla \cdot (p_t(x) \nabla \phi_t(x) t) = h(x) - \hat{h}_t$$

• Use \bar{p}_t to evaluate the optimal control $U_t = b^{\top}(X_t) \nabla \log \bar{p}_t(X_t)$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Contro

Numerical Results

Extension to nonlinear setting 0000

Log-transformation

• Define the probability $p_t(x) \propto e^{-v_t(x)}$ which solves the pde

$$\frac{\partial p_t}{\partial t} = -\underbrace{\nabla(p_t(a+\nabla b^2))}_{\text{drift term}} - \underbrace{\frac{1}{2}\nabla^2(p_t b^2)}_{\text{diffusion}} + p_t(h-\hat{h}_t), \quad p_T \propto e^{-g}$$

where $h := \frac{1}{2}c + \nabla a$ and $\hat{h}_t := \int h(x)p_t(x) \,\mathrm{d}x$

• Construct a stochastic process \bar{X}_t so that $Law(\bar{X}_t) = p_t$:

$$\mathrm{d}\bar{X}_t = a(\bar{X}_t)\,\mathrm{d}t + b(\bar{X}_t)\,\mathrm{d}\bar{\eta}_t + \nabla b^2(\bar{X}_t)\,\mathrm{d}t + \nabla \phi_t(\bar{X}_t)\,\mathrm{d}t$$

where $\overleftarrow{\eta}$ is backward Wiener process and ϕ_t solves the Poisson eq.

Poisson eq.:
$$-\frac{1}{\bar{p}_t(x)} \nabla \cdot (p_t(x) \nabla \phi_t(x) t) = h(x) - \hat{h}_t$$

• Use \bar{p}_t to evaluate the optimal control $U_t = b^{\top}(X_t) \nabla \log \bar{p}_t(X_t)$

A. A. Joshi, A. Taghvaei, and P. G. Mehta

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Log-transformation

• Define the probability $p_t(x) \propto e^{-v_t(x)}$ which solves the pde

$$\frac{\partial p_t}{\partial t} = -\underbrace{\nabla(p_t(a+\nabla b^2))}_{\text{drift term}} - \underbrace{\frac{1}{2}\nabla^2(p_t b^2)}_{\text{diffusion}} + p_t(h-\hat{h}_t), \quad p_T \propto e^{-g}$$

where $h := \frac{1}{2}c + \nabla a$ and $\hat{h}_t := \int h(x)p_t(x) \,\mathrm{d}x$

• Construct a stochastic process \bar{X}_t so that $Law(\bar{X}_t) = p_t$:

$$\mathrm{d}\bar{X}_t = a(\bar{X}_t)\,\mathrm{d}t + b(\bar{X}_t)\,\mathrm{d}\bar{\eta}_t + \nabla b^2(\bar{X}_t)\,\mathrm{d}t + \nabla \phi_t(\bar{X}_t)\,\mathrm{d}t$$

where $\overleftarrow{\eta}$ is backward Wiener process and ϕ_t solves the Poisson eq.

Poisson eq.:
$$-\frac{1}{\bar{p}_t(x)} \nabla \cdot (p_t(x) \nabla \phi_t(x) t) = h(x) - \hat{h}_t$$

• Use \bar{p}_t to evaluate the optimal control $U_t = b^{\top}(X_t) \nabla \log \bar{p}_t(X_t)$

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?

EnKF for Contro

Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?

EnKF for Contro 0000000 Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?

EnKF for Contro 0000000 Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?

EnKF for Contro 0000000 Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?

EnKF for Contro 0000000 Numerical Results

Extension to nonlinear setting

Concluding remarks

- The nonlinear extension simplifies to EnKF in LQG setting
- The Poisson eq. also appears in nonlinear filtering algorithms (duality)
- The presented nonlinear extension is not completely simulation based (requires $\nabla \cdot a$ and ∇b^2)
- Can we use the controlled system particle framework to solve the filtering and control simultaneously?

Thanks for your attention! Questions?