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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Problem Formulation

• The linear quadratic optimal control problem (LQR):

minimize
∫ T

0

(
1
2
‖CXt‖2 +

1
2
U>t RUt

)
dt +

1
2
X>T Pf XT

subject to Ẋt = AXt + BUt =: f (Xt ,Ut)

• Solution: Ut = −R−1B>PtXt where Pt solves

(backward Ricatti eq.) Ṗt = −A>Pt−PtA−C>C+PtBR−1B>Pt , PT = Pf

• Two issues with solving Ricatti directly:
(1) model parameters may not be known
(2) computationally O(d2) in the dimension d of the state-space

• Objective: design a controlled interacting particle systems

Ẋ i
t = f (X i

t ,u
i
t) + vit , for i = 1, . . . ,N

to approximately solve LQR using only a simulator (x,u) 7→ f (x,u)
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Related works

Reinforcement learning (RL) approaches:
• Coarse-ID Control (Tu & Recht 2019; Dean et. al. 2020)

System ID + robust optimization

• Policy gradient method (Fazel el al. 2018; Mohammadi et al. 2021)

(1) Assumes u = Kx and iteratively learns K using gradient descent

(2) Each iteration involves simulating

X i
t = f (X i

t , (K + δK i)X i
t ), for i = 1, . . . ,N

to approximate the gradient of the cost with respect to K

(3) requires initialization with stabilizing gain
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Our approach: EnKF type algorithm

• Simulate a controlled system of particles

dX i
t = f (X i

t ,
d�
η
i
t

dt
) dt︸ ︷︷ ︸

dynamics simulator

+
1
2

Σ
(N)
t C>CX i

t dt︸ ︷︷ ︸
RL correction

, X i
T

i.i.d∼ N (0,P−1T )

where Σ
(N)
t = 1

N

∑N
i=1 X

i
t (X i

t )
> and �

η
i
t is a backward Wiener process

• Solution to the Ricatti eq. is approximated using empirical covariance Σ
(N)
t

• Computationally more efficient in comparison to related works
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Review of EnKF for filtering
• Linear Gaussian filtering problem: find the conditional dist. P(Xt |Zt)

dXt = AXt dt + Q
1
2 dξt =: f (Xt , ξt)

dZt = HXt dt +R 1
2 dWt

• Kalman-Bucy filter: conditional dist. is Gaussian N(mt ,Σt)

dmt = Amt dt + ΣtH>R−1( dZt − Hmt dt), m0 = E(X0)

Σ̇t = AΣt + ΣtA> + Q − ΣtH>R−1HΣt , Σ0 = var(X0)

• EnKF algorithm:
• Construct a stochastic process X̄t such that

Law(X̄t) = N(mt ,Σt)

• Realize X̄t with a system of interacting particles {X 1
t , . . . ,XN

t } s.t.

1
N

N∑
i=1

δX it ≈ Law(X̄t)
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Review of EnKF: mean-field process and particle system
• Mean-field process:

dX̄t = f (X̄t , ξ̄t)︸ ︷︷ ︸
dynamics

+ Σ̄tH>R−1( dZt − HX̄t + Hm̄t

2
dt)︸ ︷︷ ︸

feedback correction

, X̄0 ∼ N (m0,Σ0)

where m̄t := E[X̄t |Zt ] and Σ̄t := var(X̄t |Zt)

• Exactness: Law(X̄t) = N(mt ,Σt) given by the Kalman filter. In particular,

m̄t = mt , Σ̄t = Σt

• Particle system:

dX i
t = f (X i

t , ξ
i
t) + Σ

(N)
t H>R−1( dZt − HX i

t + Hm(N)
t

2
dt), X i

0 ∼ N (m0,Σ0)

where m(N)
t and Σ

(N)
t are empirical approximations of m̄t and Σ̄t .

• Approximation error: Under suitable assumptions, we have

E[‖m(N)
t −mt‖2] ≤ (const.)

N
, E[‖Σ(N)

t − Σt‖2] ≤ (const.)
N
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

EnKF for Control: Attempt I

• EnKF is a simulation-based algorithm to solve the Ricatti eq. in filtering
• Can we extend EnKF to simulate the Ricatti eq. in LQR:

Ṗt = −A>Pt − PtA − C>C + PtBR−1B>Pt , PT = Pf

• Attempt I: Construct a stochastic process with variance equal to Pt

dX̄t = −A>X̄t dt + C> d�
η t +

1
2

Σ̄tBR−1B>X̄t , X̄T ∼ N(0,Pf )

where Σ̄t = E[X̄t X̄>t ] and �
η is a backward Wiener process

• Using the Itö rule for backward process:

d
dt

Σ̄t = −A>Σ̄t − Σ̄tA − C>C + Σ̄tBR−1B>Σ̄t , ΣT = Pf

Identical to Ricatti eq for Pt , therefore Σ̄t = Pt
• However, it can not be implemented using a simulator since A> is not
available.
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.

Ṗt = −A>Pt − PtA − C>C + PtBR−1B>Pt , PT = Pf

• Attempt II: Define St = P−1t which solves the eq.

d
dt
St = ASt + StA> − BR−1B> + StC>CSt , ST = P−1T

• Construct a stochastic process with variance equal to St

dX̄t = AX̄t dt + B d�
η t +

1
2

Σ̄tC>CX̄t dt , X̄T ∼ N(0,P−1T )

• Using the Itö rule for backward process:

d
dt

Σ̄t = AΣ̄t + Σ̄tA> − BR−1B> + Σ̄tC>CΣ̄t , ΣT = ST

Identical to equation for St . Therefore, Pt = S−1t = Σ̄−1t
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Ṗt = −A>Pt − PtA − C>C + PtBR−1B>Pt , PT = Pf

• Attempt II: Define St = P−1t which solves the eq.

d
dt
St = ASt + StA> − BR−1B> + StC>CSt , ST = P−1T

• Construct a stochastic process with variance equal to St

dX̄t = AX̄t dt + B d�
η t +

1
2

Σ̄tC>CX̄t dt , X̄T ∼ N(0,P−1T )

• Using the Itö rule for backward process:

d
dt

Σ̄t = AΣ̄t + Σ̄tA> − BR−1B> + Σ̄tC>CΣ̄t , ΣT = ST

Identical to equation for St . Therefore, Pt = S−1t = Σ̄−1t

• It can be implemented using a simulator

A. A. Joshi, A. Taghvaei, and P. G. Mehta EnKF for RL April 14



Introduction EnKF for Control Numerical Results Extension to nonlinear setting

EnKF for Control: Attempt II

• Objective: construct an EnKF to simulate the Ricatti eq.
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

EnKF for control: Particle system

Particle system:

dX i
t = AX i

t dt + B d�
η
i
t︸ ︷︷ ︸

dynamics simulator

+
1
2

Σ
(N)
t C>(CX i

t − 0) dt︸ ︷︷ ︸
RL correction

, X i
T

i.i.d∼ N (0,P−1T )

where Σ
(N)
t = 1

N

∑N
i=1 X

i
t (X i

t )
>

• It can be implemented using only a simulator f (x,u) = Ax + Bu
• The dynamics resembles the exploration and exploration terms
• It does not require initialization with stabilizing gain
• It can be used for both finite and infinite horizon settings
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

EnKF for control: summary

• Optimal control problem

minimize
∫ T

0

(
1
2
‖CXt‖2 +

1
2
U>t RUt

)
dt +

1
2
X>T Pf XT

subject to Ẋt = AXt + BUt =: f (Xt ,Ut)

• Exact solution: Ut = −R−1B>PtXt where Pt solves

Ṗt = −A>Pt − PtA − C>C + PtBR−1B>Pt , PT = Pf

• EnKF algorithm: approximate Pt ≈ ( 1
N

∑N
i=1 X

i
t (X i

t )
>)−1 where

dX i
t = AX i

t dt + BR
1
2 d�
η
i
t︸ ︷︷ ︸
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+
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2

Σ
(N)
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Numerical error analysis
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error = E[‖K (N)
tf − Ktf ‖2]
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Cart-pole example

Figure: Trajectories of the closed-loop nonlinear cart pole system.
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

A nonlinear extension

• Optimal control problem:

minimize E
[∫ T

0

(
1
2
c(Xt) +

1
2
U 2
t

)
dt + g(XT )

]
subject to dXt = a(Xt) dt + b(Xt)(Ut dt + dξt)

• This is a control affine system
• Each control channel is corrupted by additive Gaussian noise ξt
• Exact solution can be obtained using dynamic programming:

Ut = −b(Xt)∇vt(Xt)

where vt(x) is the value function that solves the (nonlinear) HJB eq.

∂vt
∂t

+H(vt) = 0, vT = g

• Can we have an EnKF type algorithm to solve the HJB eq?
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Log-transformation

• Define the probability pt(x) ∝ e−vt (x) which solves the pde

∂pt
∂t

= −∇(pt(a +∇b2))︸ ︷︷ ︸
drift term

− 1
2
∇2(ptb2)︸ ︷︷ ︸
diffusion

+pt(h − ĥt), pT ∝ e−g

where h := 1
2 c +∇a and ĥt :=

∫
h(x)pt(x) dx

• Construct a stochastic process X̄t so that Law(X̄t) = pt :

dX̄t = a(X̄t) dt + b(X̄t) d
�
η t +∇b2(X̄t) dt +∇φt(X̄t) dt

where �
η is backward Wiener process and φt solves the Poisson eq.

Poisson eq.: − 1
p̄t(x)

∇ · (pt(x)∇φ(x)t) = h(x)− ĥt

• Use p̄t to evaluate the optimal control Ut = b>(Xt)∇ log p̄t(Xt)
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Introduction EnKF for Control Numerical Results Extension to nonlinear setting

Concluding remarks

• The nonlinear extension simplifies to EnKF in LQG setting

• The Poisson eq. also appears in nonlinear filtering algorithms (duality)

• The presented nonlinear extension is not completely simulation based
(requires ∇ · a and ∇b2)
• Can we use the controlled system particle framework to solve the filtering
and control simultaneously?

Thanks for your attention!
Questions?

https://arxiv.org/abs/2107.01244
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