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Research Overview
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Outline

m Part |: Background

= Filtering problem
= Kalman filter (1960’s)
= Ensemble Kalman filter & particle filter (1990s)

m Part |I: Feedback Particle Filter (2013-)

= Design
= Approximation

= Error analysis
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Outline

m Part |: Background

= Filtering problem
= Kalman filter (1960’s)
= Ensemble Kalman filter & particle filter (1990s)

m Part |I: Feedback Particle Filter (2013-)

= Design
= Approximation

= Error analysis

Message of part I:

Kalman filter —  Ensemble Kalman filter ——  Feedback Particle filter
and importance controlled interacting particle systems
Message of part Il: How to analyze these systems

[T Amirhossein Taghvaei
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Filtering Problem
Example: Navigation

State Observation

ASCENDINGY
W voooics]

| Firefly Flight Control

E B

_ MasterMind

MatrixVision [
Bluefox Cam

Hidden state: Position and orientation of quadrotor
Observation: Camera, GPS, and motion sensor

Problem: Estimate the state based on observation
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Filtering Problem
Example: Navigation

State

Observation

ight Control

E B

Motion
Capture
Marker

_ MasterMind

MatrixVision 55
| Bluefox Cam

Hidden state: Position and orientation of quadrotor
Observation: Camera, GPS, and motion sensor

Problem: Estimate the state based on observation

Filtering approach: Compute the conditional probability distribution
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Filtering problem
Mathematical formulation in continuous-time

Dynamical system:
State process: dX; = (dynamical model), Xo ~ po()

Observation process: dZ; = h(X;)dt+ dW;

Filtering objective: Compute the posterior distribution P(X¢|Z[g,4)

J. Xiong, An introduction to stochastic filtering theory, 2008
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Filtering problem
Mathematical formulation in continuous-time

Dynamical system:
State process: dX; = (dynamical model), Xo ~ po()

Observation process: dZ; = h(X;)dt+ dW;

Filtering objective: Compute the posterior distribution P(X¢|Z[g,4)

Solution:
m In principle, Bayes rule. In practice, impossible to implement it
m Linear Gaussian setting: Kalman filter

m General setting: Approximate solutions

J. Xiong, An introduction to stochastic filtering theory, 2008
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Kalman-Bucy Filter

Linear Gaussian setting:
m linear dynamics: dX: = AX:dt + op dBs

m linear observation model: h(z) = Hz

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961
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Kalman-Bucy Filter

Linear Gaussian setting:
m linear dynamics: dX: = AX:dt + op dBs

m linear observation model: h(z) = Hz

Kalman-Bucy filter: P(X;|Z;) is Gaussian N (m;, )

Update for mean: dm; = Am, dt + Ki(dZ: — Hm dt)
S—— N——

dynamics correction

Update for covariance: ddztt = (Ricatti equation)

Kalman gain: [R= EtHT

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961
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Properties
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Kalman-Bucy Filter

Linear Gaussian setting:

m linear dynamics: dX: = AX:dt + op dBs

m linear observation model: h(z) = Hz

Kalman-Bucy filter: P(X;|Z;) is Gaussian N (m;, )

Update for mean: dm; = Am, dt + Ki(dZ: — Hm dt)
_ —

dynamics correction
. d¥ N .
Update for covariance: i (Ricatti equation)

Kalman gain: Ki:=X.H'

Properties

m Close relation to optimal control theory

m Strong results about the stability of the filter

Question: What is the generalization to the nonlinear and non-Gaussian setting?

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961
FPF
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Monte-Carlo Approximation

m Filtering problem has no finite-dim. solution in general — approximations

m Monte-Carlo method: Approximate with empirical distribution of N particles

P(X)) ~ i

{xi,..., x"}
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Monte-Carlo Approximation

m Filtering problem has no finite-dim. solution in general — approximations

m Monte-Carlo method: Approximate with empirical distribution of N particles

P(X)) ~ i

{Xt17 MR ] Xflv.}
Example:
State process: dX; = a(X¢)dt+ o(X¢)dB:
Objective: compute P(X)
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Example:

State process: dX; = a(X¢)dt+ o(X¢)dB:
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Monte-Carlo method: Simulate N independent samples
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Monte-Carlo Approximation

m Filtering problem has no finite-dim. solution in general — approximations

m Monte-Carlo method: Approximate with empirical distribution of N particles

1 N
P(X:) ~ > ok
i=1

{xi,...,x"}
Example:

State process: dX; = a(X¢)dt+ o(X¢)dB:
Objective: compute P(X;)

Monte-Carlo method: Simulate N independent samples

dX; = a(X})dt + o(X})dB;, for i=1,...,N

Question: Can we generalize this idea to the filtering problem?
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Ensemble Kalman filter
Monte-Carlo approximation of Kalman filter

Idea: Propagate particles {X;}Y | ~ P(X:|Z;) instead of mean and covariance

HX{+N~'Y ¥ HX]

) ) . & i iid
dX; = AX}dt+ opdBi + K" (dz, — 5 dt) X&' py
—_——— —
dynamics -
correction
n KV =x™MgT
[ 2§N> is empirical covariance
(Xt XV}

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model ...1994.

K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012
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Ensemble Kalman filter
Monte-Carlo approximation of Kalman filter

Idea: Propagate particles {X;}Y | ~ P(X:|Z;) instead of mean and covariance
HX{+N~'Y ¥ HX]
2

dt) X " po

dX; = AX}dt+ opdBi + K" (dz, —
N—  ——

dynamics

correction

s KV =MET

(V) rical .
| | + IS empirical covariance

{xh,.... %"

Properties
= In the limit (N = c0), the mean and variance evolve according to the Kalman filter
= Computational complexity is O(Nd), efficient when d > N

m It is not exact in a general setting

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model ...1994.
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012
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Idea: Propagate particles {X;}Y | ~ P(X:|Z;) instead of mean and covariance
HX{+N~'Y ¥ HX]
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dX; = AX}dt+ opdBi + K" (dz, —
N—  ——

dynamics

correction

s KV =MET

(V) rical .
| | + IS empirical covariance

{xh,.... %"

Properties
= In the limit (N = c0), the mean and variance evolve according to the Kalman filter
= Computational complexity is O(Nd), efficient when d > N

m It is not exact in a general setting

Question: What is the generalization of EnKF in a general setting?

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model ...1994.
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation, 2012
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Particle filter
Sequential Monte-Carlo method

N
i=1

Idea: Approximate the posterior P(X¢|Z:) using weighted dist. of particles {X;, W;}

N
P(X¢|2:) = Z Wtiéxti
i=1

Update the wights based on the likelihood model (importance sampling)

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
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Particle filter
Sequential Monte-Carlo method

Idea: Approximate the posterior P(X¢|Z:) using weighted dist. of particles {X,f, Wf}fvzl

N
P(Xi|Z) =Y Widy;
d=il

Update the wights based on the likelihood model (importance sampling)

Problems:
Particle impoverishment for high-dimensional problems — N o exp(d)

No control structure
No relation to Ensemble Kalman filter

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
Amirhossein Taghvaei 8 /23
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Feedback particle filter
Controlled interacting particle system

Idea: Monte-Carlo approximation + Control

N
1
P(Xi|2) ~ > by
=1

{(xt,..., xN}
Update formula:

h(X}) + N7 3L h(XY)
2

dt)3 Xé I’I\’d Po

dX; = (dynamic model) + K, (X/) o (dZ; —

correction

Gain function: K, (z) = V¢i(z) where ¢ is the solution to a PDE

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016
[FFF Amirhossein Taghvaei 9/23



Feedback particle filter
Controlled interacting particle system

Idea: Monte-Carlo approximation + Control

N
P(X:]2:) = Z

Update formula:

{xi,..., x"}

(X + NN n(X] y
(X?) 22 ( )dt)’ X3S o

dX; = (dynamic model) + K, (X/) o (dZ; —

correction

Gain function: K, (z) = V¢i(z) where ¢ is the solution to a PDE

Properties
m Exact in the limit N = oo
m Feedback control structure

m Simplify to EnKF in linear Gaussian setting

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016
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Analysis of FPF

Recap:
KF: dm; = (dynamical model) + K.(dZ; — Hm, dt)

_ HX]+ N 'Y HX]
EnKF: dX, = (dynamical model) + K!"/(dZ, — ‘ 2ZJ71 : dt)

X} + NN h(X]
FPF: dX; = (dynamical model) + K\ (X}) o (dZ; — () 22 (x)

dt)
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Analysis of FPF

Recap:
KF: dm; = (dynamical model) + K.(dZ; — Hm, dt)
i 15N J
HXi+ N7 S HX

EnKF: dX, = (dynamical model) + K!"/(dZ, — 5 )
XD+ NN h(X]
FPF: dX; = (dynamical model) + K\ (X}) o (dZ, — (X:) 22 ( )dt)
Analysis of FPF:
Design Approximation Error analysis
Mean-field limit X, U, _— Finite-N system {X;, U; }i,
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Outline

Background

Filtering problem
Kalman filter (1960's)

Monte-Carlo approximation: Ensemble Kalman filter & particle filters (1990s)

m Feedback Particle Filter

= Design
Approximation

Error analysis
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Design: problem overview

Pt

Po

The trajectory of the posterior distribution p; := P(X¢|Zp ) in the probability space
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Design: problem overview

Pt

Po

The trajectory of the posterior distribution p; := P(X¢|Zp ) in the probability space

Design problem: Construct a random process X; that follows the posterior, i.e

Xi~pe, VE>0
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Design: problem overview

Pt

Po

The trajectory of the posterior distribution p; := P(X¢|Zp ) in the probability space

Design problem: Construct a random process X; that follows the posterior, i.e

Xi~pe, VE>0

Non-uniqueness: There are infinitely many solutions

[T Amirhossein Taghvaei 11 /23



Design: Non-uniqueness example

Example:

State process: dX; = dB:, Xo~ N(0,1)
Objective: compute P(X)

[T Amirhossein Taghvaei 12 /23



Design: Non-uniqueness example

Example:

State process:
Objective:

Two solutions:

-10

FPF

10

dXt == dBt7 X() o N(O, 1)

compute P(X%)

Amirhossein Taghvaei
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Design: Non-uniqueness example

Example:

State process: dX; = dB:, Xo~ N(0,1)
Objective: compute P(X)

Two solutions:

, , d X}
() dX} = dB} ) X =3vr s

10

-10

They both produce the same distribution N (0,1 + ).

FPF Amirhossein Taghvaei
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Optimal transportation approach

I

m Reason for non-uniqueness: Only the marginal distributions, at each time instant,
are specified

m Optimal transport maps provide a way to uniquely couple two distributions.
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Optimal transportation approach

I

m Reason for non-uniqueness: Only the marginal distributions, at each time instant,
are specified

m Optimal transport maps provide a way to uniquely couple two distributions.

Proposed solution: Infinitesimal optimal transport maps

T
YA "

hpt

.

Po
Xt+At = Tt(Xt)7

m T is the optimal transport map between p: and pria:
m Take the limit as At — 0

[T Amirhossein Taghvaei 13 /23



Optimal transport FPF
Linear Gaussian setting

m The procedure is carried out in linear Gaussian setting.

m Recall in this setting, only the mean and variance are important

Proposition
In linear Gaussian setting, the optimal transportation procedure result in the following
process:

dX; =(terms effecting the mean) + G¢(X: — m) dt
where G is the unique symmetric solution to the Lyapunov equation

GiZt + 3Gy = Rice(2:)

A. Taghvaei, P. G. Mehta, An optimal transport formulation for the linear feedback particle filter, (ACC) 2016
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process:
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dX; =(terms effecting the mean) + (4 — %f}tHTH)(Xt —my)dt + o5 dB;

A. Taghvaei, P. G. Mehta, An optimal transport formulation for the linear feedback particle filter, (ACC) 2016
FPF Amirhossein Taghvaei 14 / 23



Optimal transport FPF
Linear Gaussian setting

m The procedure is carried out in linear Gaussian setting.

m Recall in this setting, only the mean and variance are important

Proposition

In linear Gaussian setting, the optimal transportation procedure result in the following
process:

dX; =(terms effecting the mean) + G¢(X: — m) dt
where G is the unique symmetric solution to the Lyapunov equation
GiZt + 3Gy = Rice(2:)
Comparison: A non-optimal (and stochastic) solution is
_ 1. _ _
dX; =(terms effecting the mean) + (A — §EtHTH)(Xt —my)dt + op dB;

Question: What is the difference between the two forms of the solution? Does the
optimal transport way result in a more stable procedure?

A. Taghvaei, P. G. Mehta, An optimal transport formulation for the linear feedback particle filter, (ACC) 2016
[T Amirhossein Taghvaei 14 / 23



Outline

Background

Filtering problem
Kalman filter (1960's)

Monte-Carlo approximation: Ensemble Kalman filter & particle filters (1990s)

m Feedback Particle Filter

Design
= Approximation

Error analysis
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Approximation
Problem formulation

FPF update formula:

dX} = (dynamic model) + K (X}) o (dZ; — %(h(XZ) + ) dt)

Gain function Ki(z) = V¢i(z) where ¢ solves the Poisson eq.

Poisson equation:

Computational problem:

Given: {th,...,XtN} iifjpt

Approximate:  {K:(X}),...,Ki(X)}

Xt

FPF Amirhossein Taghvaei 15 /23



Linear Gaussian setting
Relation to ensemble the Kalman filter

] Linear Gaussian setting
General setting

K(z) = K (Kalman gain)

K(z) =7

Vo(x)
K(z)

K; = Kalman gain

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-
time nonlinear filtering problem. ASME, 2017
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Linear Gaussian setting
Relation to ensemble the Kalman filter

] Linear Gaussian setting
General setting

K(z) = K (Kalman gain)

K(z) =7

Vo(x)
K(z)

K; = Kalman gain

const. gain

FPF EnKf

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-
time nonlinear filtering problem. ASME, 2017
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Galerkin approximation

Idea: Projection into a finite-dim subspace

¢ € H(p,RY)
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S =span{l,x,...,2"}
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Galerkin approximation

Idea: Projection into a finite-dim subspace

— Exact
e o M=3
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Galerkin approximation

Idea: Projection into a finite-dim subspace

¢ € H}(p,R?)

S =span{l,x,...,2"}

Choice of basis function is difficult

FPF Amirhossein Taghvaei 17 / 23



Diffusion map approximation

m Stochastic formulation:

¢=PE¢+/ Py(h—h)ds
0
where {P;} is the semigroup for A, := 1V - (pV)
= Approximate P with a Markov matrix using particles (Coifman & Lafon, 2006)

m The resulting approximation takes the form K(X Z 5i; X

FPF
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Diffusion map approximation
Numerical analysis

7
— exact
® o £=10?
5
K 4
3
2 N
const. gain
F-ee e —
' _./ ¥
[
-2 Y 0 1 2
X

A. Taghvaei, P. G. Mehta, and S. P. Meyn. Gain function approximation in the feedback particle filter, SIAM
(under review)
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Numerical analysis

A. Taghvaei, P. G. Mehta, and S. P. Meyn. Gain function approximation in the feedback particle filter, SIAM
(under review)
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const. gain
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Diffusion map approximation
Numerical analysis

10 — exact
° o £=10"3

A. Taghvaei, P. G. Mehta, and S. P. Meyn. Gain function approximation in the feedback particle filter, SIAM
(under review)
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Diffusion map approximation
Numerical analysis

— exact
° o g=10"3

Error

variance

—e— diffusion map
---- constant gain

bias

dominates dominates
10-1 j
1073 1072 107t 10° 10!
£
Error estimates: r.m.s.e = O(e) + O(;)
R el+d/2 N1/2

bias >
variance

A. Taghvaei, P. G. Mehta, and S. P. Meyn. Gain function approximation in the feedback particle filter, SIAM
(under review)
FPF
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Diffusion map approximation
Numerical analysis

— exact
£=10"3

Error

variance

—e— diffusion map
---- constant gain

bias
dominates

dominates
107 s -
-2 -1 0 1 3 10 10
X
E timates: =0 @) L
rror estimates: r.m.s.e = O(e) + (W

bias

Question: How does the error effect the distribution?

variance

7)

A. Taghvaei, P. G. Mehta, and S. P. Meyn. Gain function approximation in the feedback particle filter, SIAM

(under review)
FPF
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Outline

Background

Filtering problem
Kalman filter (1960's)

Monte-Carlo approximation: Ensemble Kalman filter & particle filters (1990s)

m Feedback Particle Filter

Design
Approximation

= Error analysis
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Error analysis of finite-/V system
Linear Gaussian setting

Motivation:

= Simulating Kalman filter is computationally expensive for high-dimensional problems

if state dimension isd = covariance matrix is d X d
=  computational complexity is O(d?)
= Not scalable for high-dim problems

(e.g weather prediction)

[T Amirhossein Taghvaei 20/ 23



Error analysis of finite-/V system
Linear Gaussian setting

Motivation:

= Simulating Kalman filter is computationally expensive for high-dimensional problems
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Error analysis of finite-/V system
Linear Gaussian setting

Motivation:

= Simulating Kalman filter is computationally expensive for high-dimensional problems

if state dimension isd = covariance matrix is d X d
=  computational complexity is O(d?)
= Not scalable for high-dim problems
(e.g weather prediction)
= However EnKF computationally scales better with dimension O(Nd)

Question: What is the error of the EnKF for finite number of particles?
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Error analysis of finite-N system
Problem formulation

Finite- NV system:

dX; = (linear dynamics) + KEN)(dZt — %H(XimiN)) dt), Xg o

KM — M T

(

. . N . N
with empirical mean m; ) and covariance 25 )
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Error analysis of finite-N system
Problem formulation

Finite- NV system:
dX; = (linear dynamics) + Kgm(dZt — %H(Ximim) dt), Xg o
KM — @™ g™

(

. .. N . N
with empirical mean m; ) and covariance 25 )

Mean-field limit:
3 . q o = 1 i _ =
dX; = (linear dynamics) + K, (dZ; — §H(Xt +me)dt), Xo~ po
Ki=SH'

with mean-field mean m; = E[X;|2;] and covariance ¥; = Cov(X;|Z;)
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Error analysis of finite-N system
Problem formulation

Finite- NV system:

dX; = (linear dynamics) + K,EN)(dZt — %H(Ximim) dt), X¢ o

KM — M T

with empirical mean m§ ) and covariance ¥

(N)
t
Mean-field limit:
_ ) ] _ _ 1 P _
dX; = (linear dynamics) + K, (dZ; — §H(Xt +m.)dt), Xo ~ po
Ki=SH'
with mean-field mean m; = E[X;| 2] and covariance ¥; = Cov(X;|Z;)
Error analysis:

Analysis of the mean-field system
Analysis of the converegnce of the finite-IV system to the mean-field limit

—~

2
Finite-N system (:u) mean-field system g Kalman filter
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Error analysis of the EnKF

Assumption The system is stable and the observation matrix is full rank.

P Del Moral, J Tugaut. On the stability and the uniform propagation of chaos properties of ensemble
Kalman—Bucy filters, 2018
A. Taghvaei, P. G. Mehta, Error analysis of the stochastic linear feedback particle filter, CDC, 2018
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Error analysis of the EnKF

Assumption The system is stable and the observation matrix is full rank.

Error analysis

Under the assumption, EnKF admits the following error estimates:
const.
Eflme - m{™p7] < (cont)
const.
e[z, - 5P < (o0t

where the constant does not depend on time.

P Del Moral, J Tugaut.
Kalman—Bucy filters, 2018

A. Taghvaei, P. G. Mehta, Error analysis of the stochastic linear feedback particle filter, CDC, 2018
FPF
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Error analysis of the EnKF

Assumption The system is stable and the observation matrix is full rank.

Error analysis

Under the assumption, EnKF admits the following error estimates:

const.
Elm, —m{™?] < (O0%t)

(const.)

B[, — 26717 < =

where the constant does not depend on time.

Question:

m Kalman filter is stable when the system is stabilizable and detectable

m Can we prove uniform error estimates of EnKF under these conditions?

P Del Moral, J Tugaut. On the stability and the uniform propagation of chaos properties of ensemble
Kalman—Bucy filters, 2018
A. Taghvaei, P. G. Mehta, Error analysis of the stochastic linear feedback particle filter, CDC, 2018
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Conclusion

Part I: FPF is generalization of Kalman filter

Kalman filter ~——  Ensemble Kalman filter ——  Feedback Particle filter
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Kalman filter ——  Ensemble Kalman filter
Part 1l: Analysis of FPF

Design Approximation

Mean-field limit X, U; ey

m Design: Infinitesimal optimal transport maps

—  Feedback Particle filter

Error analysis

Finite-N system {X/, U}~

m Approximation: Galerkin and Diffusion map approximation

m Error analysis: Convergence in linear Gaussian setting under strong conditions
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Conclusion

I

Part I: FPF is generalization of Kalman filter

Kalman filter ~——  Ensemble Kalman filter ——  Feedback Particle filter
Part 1l: Analysis of FPF

Design Approximation Error analysis

Mean-field limit X, U; - Finite-N system { X/, Ui},

m Design: Infinitesimal optimal transport maps
m Approximation: Galerkin and Diffusion map approximation

m Error analysis: Convergence in linear Gaussian setting under strong conditions

Question: The three aspects are disjoint. Can they be carried out in a single framework?

Thanks for your attention!
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