Feedback Particle Filter: Design, Approximation, and Error Analysis Presented at the University of California, Los Angeles

Amirhossein Taghvaei[†] Joint work with Prashant G. Mehta^{*} and Sean P. Meyn⁺

[†]Department of Mechanical and Aerospace Engineering, Univ. of California, Irvine *Univ. of Illinois, ⁺Univ. of Florida

Nov 19, 2019

Feedback particle filter: Numerical algorithm for the nonlinear filtering problem

Part I: Background

- Filtering problem in discrete time
- particle-based methods
- Filtering problem in continuous time
- Feedback particle filter (FPF)
- Part II: Gain function approximation in FPF

Feedback particle filter: Numerical algorithm for the nonlinear filtering problem

Part I: Background

- Filtering problem in discrete time
- particle-based methods
- Filtering problem in continuous time
- Feedback particle filter (FPF)

Part II: Gain function approximation in FPF

Filtering objective: Compute the posterior distribution $\pi_k(\cdot) := \mathsf{P}(X_k \in \cdot | Z_{1:k})$ Solution:

$$\begin{aligned} \pi_{k-1}(x) &\longrightarrow \quad \tilde{\pi}_k(x) = \int a(x|x')\pi_{k-1}(x')\mathrm{d}x' \\ &\longrightarrow \quad \pi_k(x) = \frac{l(Z_k|x)\tilde{\pi}_k(x)}{\gamma} \quad \text{(Bayes rule)} \end{aligned}$$

■ In general, no finite-dimensional solution ⇒ approximations

State process: $X_k \sim a(\cdot|X_{k-1}),$ $X_0 \sim \pi_0(\cdot)$ Observation process: $Z_k \sim l(\cdot|X_k)$

Filtering objective: Compute the posterior distribution $\pi_k(\cdot) := P(X_k \in \cdot | Z_{1:k})$ Solution:

$$\pi_{k-1}(x) \longrightarrow \tilde{\pi}_k(x) = \int a(x|x')\pi_{k-1}(x')dx'$$

 $\longrightarrow \pi_k(x) = \frac{l(Z_k|x)\tilde{\pi}_k(x)}{\gamma}$ (Bayes rule)

■ In general, no finite-dimensional solution ⇒ approximations

State process: $X_k \sim a(\cdot|X_{k-1}), \qquad X_0 \sim \pi_0(\cdot)$ Observation process: $Z_k \sim l(\cdot|X_k)$

Filtering objective: Compute the posterior distribution $\pi_k(\cdot) := \mathsf{P}(X_k \in \cdot | Z_{1:k})$ Solution:

$$\pi_{k-1}(x) \longrightarrow \tilde{\pi}_k(x) = \int a(x|x')\pi_{k-1}(x')dx'$$
$$\longrightarrow \pi_k(x) = \frac{l(Z_k|x)\tilde{\pi}_k(x)}{\gamma} \quad \text{(Bayes rule)}$$

In general, no finite-dimensional solution ⇒ approximations

State process: $X_k \sim a(\cdot|X_{k-1}),$ $X_0 \sim \pi_0(\cdot)$ Observation process: $Z_k \sim l(\cdot|X_k)$

Filtering objective: Compute the posterior distribution $\pi_k(\cdot) := \mathsf{P}(X_k \in \cdot | Z_{1:k})$ Solution:

$$\pi_{k-1}(x) \longrightarrow \tilde{\pi}_k(x) = \int a(x|x')\pi_{k-1}(x')dx'$$
$$\longrightarrow \pi_k(x) = \frac{l(Z_k|x)\tilde{\pi}_k(x)}{\gamma} \quad \text{(Bayes rule)}$$

In general, no finite-dimensional solution \Rightarrow approximations

Background: Particle-based methods

Approximate π_k with empirical distribution of particles $\{X_k^1, \ldots, X_k^N\}$

$$\pi_k \approx \frac{1}{N} \sum_{i=1}^N \delta_{X_k^i}$$

- Transform particles $\{X_k^i\}_{i=1}^N \sim \pi_k$ to particles $\{X_{k+1}^i\}_{i=1}^N \sim \pi_{k+1}$
- Different particle-based algorithms correspond to different transformations

Background: Particle-based methods

• Approximate π_k with empirical distribution of particles $\{X_k^1, \ldots, X_k^N\}$

$$\pi_k \approx \frac{1}{N} \sum_{i=1}^N \delta_{X_k^i}$$

Transform particles $\{X_k^i\}_{i=1}^N \sim \pi_k$ to particles $\{X_{k+1}^i\}_{i=1}^N \sim \pi_{k+1}$

Different particle-based algorithms correspond to different transformations

Background: Particle-based methods

Approximate π_k with empirical distribution of particles $\{X_k^1, \ldots, X_k^N\}$

Transform particles $\{X_k^i\}_{i=1}^N \sim \pi_k$ to particles $\{X_{k+1}^i\}_{i=1}^N \sim \pi_{k+1}$

Different particle-based algorithms correspond to different transformations

Transportation viewpoint:

Given:
$$\{X_k^1, \ldots, X_k^N\} \sim \pi_k$$
 and $l_k(\cdot)$

Approximate: a transportation map between π_k and $\pi_{k+1}(x) = \frac{\pi_k(x)l_k(x)}{\gamma}$

Questions:

- There are infinitely many transport maps. Which one to approximate?
- How to approximate it in terms of particles?
- What is the approximation error?

Y. Cheng and S. Reich, A McKean optimal transportation perspective on Feynman-Kac formulae with application to data assimilation, 2013

Given:
$$\{X_k^1, \ldots, X_k^N\} \sim \pi_k$$
 and $l_k(\cdot)$

Approximate: a transportation map between π_k and $\pi_{k+1}(x) = \frac{\pi_k(x)l_k(x)}{\gamma}$

Questions:

- There are infinitely many transport maps. Which one to approximate?
- How to approximate it in terms of particles?
- What is the approximation error?

Y. Cheng and S. Reich, A McKean optimal transportation perspective on Feynman-Kac formulae with application to data assimilation, 2013

SIR particle filter: (Gordon et al., 1993, Doucet, 2009)

Sample from the independent coupling:

(Variations of) SIR particle filter: (Del Moral 2004, Bain & Crisan 2009, Van Leeuwen 2015, Nakamura & Potthast 2015)

Sample from a coupling that is optimal with respect to some optimality criteria

Ensemble transform particle filters:

- Sample from optimal transport coupling (Cheng & Reich, 2013)
- Sample from Schrodinger bridge coupling (Reich, 2018)

SIR particle filter: (Gordon et al., 1993, Doucet, 2009)

Sample from the independent coupling:

(Variations of) SIR particle filter: (Del Moral 2004, Bain & Crisan 2009, Van Leeuwen 2015, Nakamura & Potthast 2015)

Sample from a coupling that is optimal with respect to some optimality criteria

Ensemble transform particle filters:

- Sample from optimal transport coupling (Cheng & Reich, 2013)
- Sample from Schrodinger bridge coupling (Reich, 2018)

SIR particle filter: (Gordon et al., 1993, Doucet, 2009)

Sample from the independent coupling:

(Variations of) SIR particle filter: (Del Moral 2004, Bain & Crisan 2009, Van Leeuwen 2015, Nakamura & Potthast 2015)

Sample from a coupling that is optimal with respect to some optimality criteria

Ensemble transform particle filters:

- Sample from optimal transport coupling (Cheng & Reich, 2013)
- Sample from Schrodinger bridge coupling (Reich, 2018)

State process:
$$dX_t = a(X_t)dt + \sigma(X_t)dB_t$$
, $X_0 \sim \pi_0$
Observation process: $dZ_t = h(X_t)dt + dW_t$

Filtering objective: Compute the posterior distribution $\pi_t(\cdot) := \mathsf{P}(X_t \in \cdot | Z_{[0,t]})$ Solution:

$$d\pi_t(x) = \underbrace{\mathcal{L}\pi_t(x)dt}_{\text{Fokker-Planck}} + \underbrace{\pi_t(x)(h(x) - \hat{h}_t)dI_t}_{\text{Bayes rule}}, \quad \text{(Kushner-Stratonovic spde)}$$

Innovation error process $dI_t = dZ_t - \hat{h}_t dt$

$$\hat{h}_t = \int h(x) \pi_t(x) \mathrm{d}x$$

l In

J. Xiong, An introduction to stochastic filtering theory, 2008

State process:
$$dX_t = a(X_t)dt + \sigma(X_t)dB_t$$
, $X_0 \sim \pi_0$
Observation process: $dZ_t = h(X_t)dt + dW_t$

Filtering objective: Compute the posterior distribution $\pi_t(\cdot) := \mathsf{P}(X_t \in \cdot | Z_{[0,t]})$

Solution:

$$d\pi_t(x) = \underbrace{\mathcal{L}\pi_t(x)dt}_{\text{Fokker-Planck}} + \underbrace{\pi_t(x)(h(x) - \hat{h}_t)dI_t}_{\text{Bayes rule}}, \quad \text{(Kushner-Stratonovic spde)}$$

Innovation error process $dI_t = dZ_t - \hat{h}_t dt$

$$\hat{h}_t = \int h(x) \pi_t(x) \mathrm{d}x$$

🔲 In

J. Xiong, An introduction to stochastic filtering theory, 2008

State process:
$$dX_t = a(X_t)dt + \sigma(X_t)dB_t$$
, $X_0 \sim \pi_0$
Observation process: $dZ_t = h(X_t)dt + dW_t$

Filtering objective: Compute the posterior distribution $\pi_t(\cdot) := \mathsf{P}(X_t \in \cdot | Z_{[0,t]})$

Solution:

$$d\pi_t(x) = \underbrace{\mathcal{L}\pi_t(x)dt}_{\text{Fokker-Planck}} + \underbrace{\pi_t(x)(h(x) - \hat{h}_t)dI_t}_{\text{Bayes rule}}, \quad \text{(Kushner-Stratonovic spde)}$$

Innovation error process $dI_t = dZ_t - \hat{h}_t dt$

$$\hat{h}_t = \int h(x)\pi_t(x) \mathrm{d}x$$

In general, no finite-dimensional solution \Rightarrow approximations

J. Xiong, An introduction to stochastic filtering theory, 2008

State process:
$$dX_t = a(X_t)dt + \sigma(X_t)dB_t$$
, $X_0 \sim \pi_0$
Observation process: $dZ_t = h(X_t)dt + dW_t$

Filtering objective: Compute the posterior distribution $\pi_t(\cdot) := \mathsf{P}(X_t \in \cdot | Z_{[0,t]})$

Solution:

$$d\pi_t(x) = \underbrace{\mathcal{L}\pi_t(x)dt}_{\text{Fokker-Planck}} + \underbrace{\pi_t(x)(h(x) - \hat{h}_t)dI_t}_{\text{Bayes rule}}, \quad \text{(Kushner-Stratonovic spde)}$$

Innovation error process $dI_t = dZ_t - \hat{h}_t dt$

$$\hat{h}_t = \int h(x) \pi_t(x) \mathrm{d}x$$

 \blacksquare In general, no finite-dimensional solution \Rightarrow approximations

J. Xiong, An introduction to stochastic filtering theory, 2008

Idea:

• Approximate π_k with empirical distribution of particles $\{X_t^1, \ldots, X_t^N\}$

$$\pi_t \approx \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}$$

Continuously update particles such that $\{X^i_t\}_{i=1}^N \sim \pi_t$

Background: Feedback particle filter (FPF)

Update formula:

$$\mathrm{d}X_t^i = (\mathsf{dynamic model}) + \underbrace{\nabla \phi_t(X_t^i) \circ \mathrm{d}I_t^i}_{\mathsf{correction}}, \quad X_0^i \sim \rho_0$$

• where ϕ_t solves the (weighted) Poisson eq.

$$\frac{1}{\rho_t(x)}\nabla\cdot(\rho_t(x)\nabla\phi_t(x)) = h(x) - \hat{h}_t$$

 ρ_t is probability density for X_t^i (in mean-field limit)

Consistency of FPF:

if
$$\rho_0 = \pi_0$$
, then $\rho_t = \pi_t$

T. Yang, P. G. Mehta, and S. P. Meyn. Feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Update formula:

$$dX_t^i = (\text{dynamic model}) + \underbrace{\nabla \phi_t(X_t^i) \circ dI_t^i}_{\text{correction}}, \quad X_0^i \sim \rho_0$$

• where ϕ_t solves the (weighted) Poisson eq.

$$\frac{1}{\rho_t(x)}\nabla\cdot(\rho_t(x)\nabla\phi_t(x)) = h(x) - \hat{h}_t$$

• ρ_t is probability density for X_t^i (in mean-field limit)

Consistency of FPF:

if $\rho_0 = \pi_0$, then $\rho_t = \pi_t$

T. Yang, P. G. Mehta, and S. P. Meyn. Feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Update formula:

$$dX_t^i = (\text{dynamic model}) + \underbrace{\nabla \phi_t(X_t^i) \circ dI_t^i}_{\text{correction}}, \quad X_0^i \sim \rho_0$$

• where ϕ_t solves the (weighted) Poisson eq.

$$\frac{1}{\rho_t(x)}\nabla\cdot(\rho_t(x)\nabla\phi_t(x)) = h(x) - \hat{h}_t$$

• ρ_t is probability density for X_t^i (in mean-field limit)

Consistency of FPF:

if
$$\rho_0 = \pi_0$$
, then $\rho_t = \pi_t$

T. Yang, P. G. Mehta, and S. P. Meyn. Feedback particle filter, TAC, 2013

T. Yang, R. S. Laugesen, P. G. Mehta, and S. P. Meyn. Multivariable feedback particle filter, Automatica, 2016

Approximation: Numerical approximation of the gain

 $\begin{array}{ll} \mbox{Given:} & \{X_t^1,\ldots,X_t^N\}_{i=1}^N\sim\rho_t \\ \mbox{Approximate:} & \{\nabla\phi_t(X_t^1),\ldots,\nabla\phi_t(X_t^N)\}_{i=1}^N \end{array}$

Design: How to construct a control law that is exact?

E Error analysis: Analysis of the error between empirical distribution $\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{t}^{i}}$ and exact filter π_{t}

Approximation: Numerical approximation of the gain

 $\begin{array}{ll} \mbox{Given:} & \{X_t^1,\ldots,X_t^N\}_{i=1}^N\sim\rho_t \\ \mbox{Approximate:} & \{\nabla\phi_t(X_t^1),\ldots,\nabla\phi_t(X_t^N)\}_{i=1}^N \end{array}$

Design: How to construct a control law that is exact?

E Error analysis: Analysis of the error between empirical distribution $\frac{1}{N}\sum_{i=1}^{r}\delta_{X_{t}^{i}}$ and exact filter π_{t}

Approximation: Numerical approximation of the gain

 $\begin{array}{ll} \mbox{Given:} & \{X_t^1,\ldots,X_t^N\}_{i=1}^N\sim\rho_t \\ \mbox{Approximate:} & \{\nabla\phi_t(X_t^1),\ldots,\nabla\phi_t(X_t^N)\}_{i=1}^N \end{array}$

- 2 Design: How to construct a control law that is exact?
- Error analysis: Analysis of the error between empirical distribution $\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ and exact filter π_{t}

I Approximation: Numerical approximation of the gain \leftarrow this talk

 $\begin{array}{ll} \text{Given:} & \{X_t^1, \ldots, X_t^N\}_{i=1}^N \sim \rho_t \\ \text{Approximate:} & \{\nabla \phi_t(X_t^1), \ldots, \nabla \phi_t(X_t^N)\}_{i=1}^N \end{array}$

2 Design: How to construct a control law that is exact?

Error analysis: Analysis of the error between empirical distribution $\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}$ and exact filter π_{t}

Part I: Background

part II: Gain function approximation in FPF

- Constant gain approximation
- Galerkin approximation
- Diffusion-map approximation
- Error analysis

FPF update formula:

 $dX_t^i = (dynamic model) + \nabla \phi_t(X_t^i) \circ dI_t^i$ where ϕ_t solves the Poisson eq.

Poisson equation:

$$-\Delta_{\rho}\phi(x) = h(x) - \hat{h}$$

where
$$\Delta_{\rho}\phi := \frac{1}{\rho}\nabla\cdot(\rho\nabla\phi)$$

Computational problem:

 $\begin{array}{ll} \mbox{Given:} & \{X^1,\ldots,X^N\} \overset{\mbox{i.i.d}}{\sim} \rho \\ \mbox{Approximate:} & \{\nabla \phi(X^1),\ldots,\nabla \phi(X^N)\} \end{array}$

Gain function approximation Constant gain approximation

 $\mathsf{E}[\nabla\phi]$

x

A closed-form formula:

$$\mathsf{K}_{\mathsf{const}} = \int (h(x) - \hat{h}) x \rho(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1} (h(X^i) - \hat{h}^{(N)}) X^i$$

FPF
$$\xrightarrow{\text{const. gain approx.}}$$
 Ensemble Kalman filter (EnKF)

Can we improve this approximation?

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model ... 1994. A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Gain function approximation Constant gain approximation

A closed-form formula:

$$\mathsf{K}_{\mathsf{const}} = \int (h(x) - \hat{h}) x \rho(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1} (h(X^i) - \hat{h}^{(N)}) X^i$$

Can we improve this approximation?

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model ...1994. A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Gain function approximation Constant gain approximation

A closed-form formula:

$$\mathsf{K}_{\mathsf{const}} = \int (h(x) - \hat{h}) x \rho(x) \mathrm{d}x \approx \frac{1}{N} \sum_{i=1} (h(X^i) - \hat{h}^{(N)}) X^i$$

■ FPF <u>
const. gain approx.</u> Ensemble Kalman filter (EnKF)

Can we improve this approximation?

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model \dots 1994.

A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions... ASME, 2017

Assumptions:

(A1) (Density has Gaussian tail) $\rho = e^{-V}$ where $V(x) = \frac{1}{2}(x - \bar{x})^{\top} \Sigma^{-1}(x - \bar{x}) + W(x)$ with $W \in C_b^{\infty}(\mathbb{R}^d)$

(A2) (h has linear growth) $h(x) = c^\top x + w(x)$ where $w \in C^\infty_b(\mathbb{R}^d)$

Function spaces:
$$L^{2}(\rho)$$
, $H^{1}(\rho)$, $L^{2}_{0}(\rho) := \left\{ f \in L^{2}(\rho); \int f \rho dx = 0 \right\}$, $H^{1}_{0}(\rho)$

Poincaré inequality: Under Assumption (A1), $\exists \lambda > 0$ such that

$$\int f^2 \rho \mathrm{d}x \le \frac{1}{\lambda} \int |\nabla f|^2 \rho \mathrm{d}x, \quad \forall f \in H^1_0(\rho)$$

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson's equation in nonlinear filtering, SIAM, 2015

Assumptions:

(A1) (Density has Gaussian tail) $\rho = e^{-V}$ where $V(x) = \frac{1}{2}(x - \bar{x})^{\top} \Sigma^{-1}(x - \bar{x}) + W(x)$ with $W \in C_b^{\infty}(\mathbb{R}^d)$

(A2) (h has linear growth) $h(x) = c^{\top}x + w(x)$ where $w \in C_b^{\infty}(\mathbb{R}^d)$

Function spaces:
$$L^{2}(\rho)$$
, $H^{1}(\rho)$, $L^{2}_{0}(\rho) := \left\{ f \in L^{2}(\rho); \int f \rho dx = 0 \right\}$, $H^{1}_{0}(\rho)$

Poincaré inequality: Under Assumption (A1), $\exists \lambda > 0$ such that

$$\int f^2 \rho \mathrm{d}x \le \frac{1}{\lambda} \int |\nabla f|^2 \rho \mathrm{d}x, \quad \forall f \in H_0^1(\rho)$$

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson's equation in nonlinear filtering, SIAM, 2015

Assumptions:

(A1) (Density has Gaussian tail) $\rho = e^{-V}$ where $V(x) = \frac{1}{2}(x-\bar{x})^{\top}\Sigma^{-1}(x-\bar{x}) + W(x)$ with $W \in C_b^{\infty}(\mathbb{R}^d)$

(A2) (h has linear growth) $h(x) = c^{\top}x + w(x)$ where $w \in C_b^{\infty}(\mathbb{R}^d)$

Function spaces:
$$L^{2}(\rho)$$
, $H^{1}(\rho)$, $L^{2}_{0}(\rho) := \left\{ f \in L^{2}(\rho); \int f \rho dx = 0 \right\}$, $H^{1}_{0}(\rho)$

Poincaré inequality: Under Assumption (A1), $\exists \lambda > 0$ such that

$$\int f^2 \rho \mathrm{d}x \leq \frac{1}{\lambda} \int |\nabla f|^2 \rho \mathrm{d}x, \quad \forall f \in H^1_0(\rho)$$

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson's equation in nonlinear filtering, SIAM, 2015

Assumptions:

(A1) (Density has Gaussian tail) $\rho = e^{-V}$ where $V(x) = \frac{1}{2}(x - \bar{x})^{\top} \Sigma^{-1}(x - \bar{x}) + W(x)$ with $W \in C_b^{\infty}(\mathbb{R}^d)$

(A2) (h has linear growth) $h(x) = c^{\top}x + w(x)$ where $w \in C_b^{\infty}(\mathbb{R}^d)$

Function spaces:
$$L^{2}(\rho)$$
, $H^{1}(\rho)$, $L^{2}_{0}(\rho) := \left\{ f \in L^{2}(\rho); \int f \rho dx = 0 \right\}$, $H^{1}_{0}(\rho)$

Poincaré inequality: Under Assumption (A1), $\exists \lambda > 0$ such that

$$\int f^2 \rho \mathrm{d}x \leq \frac{1}{\lambda} \int \left| \nabla f \right|^2 \rho \mathrm{d}x, \quad \forall f \in H^1_0(\rho)$$

R. S. Laugesen, P. G. Mehta, S. P. Meyn, and M. Raginsky. Poisson's equation in nonlinear filtering, SIAM, 2015

(I) Weak formulation: (Galerkin algorithm)

$$\left\langle \nabla \phi, \nabla \psi \right\rangle = \left\langle h - \hat{h}, \psi \right\rangle, \quad \forall \psi \in H^1(\rho)$$

where $\left\langle f,g
ight
angle :=\int f(x)g(x)
ho(x)\mathrm{d}x$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t:=e^{t\Delta_
ho}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h}) \right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x)dx$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t:=e^{t\Delta_
ho}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h})\right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x)dx$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t:=e^{t\Delta_
ho}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h})\right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f,g \rangle := \int f(x)g(x)\rho(x)\mathrm{d}x$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t := e^{t\Delta_{
ho}}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h})\right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f,g \rangle := \int f(x)g(x)\rho(x)\mathrm{d}x$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t := e^{t\Delta_{
ho}}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h})\right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f, g \rangle := \int f(x)g(x)\rho(x)dx$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t := e^{t\Delta_{\rho}}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h}) \right] \rho(x) \mathrm{d}x$$

(I) Weak formulation: (Galerkin algorithm)

$$\langle \nabla \phi, \nabla \psi \rangle = \langle h - \hat{h}, \psi \rangle, \quad \forall \psi \in H^1(\rho)$$

where $\langle f,g \rangle := \int f(x)g(x)\rho(x)\mathrm{d}x$

(II) Semigroup formulation: (Diffusion-map algorithm)

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

where $P_t := e^{t\Delta_{\rho}}$ is the semigroup

$$\min_{\phi \in H_0^1(\rho)} \int \left[\frac{1}{2} |\nabla \phi(x)|^2 - \phi(x)(h(x) - \hat{h}) \right] \rho(x) \mathrm{d}x$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(M,N)}\|_{L^{2}}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_{M}}} \|h - \Pi_{S}h\|_{L^{2}}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^{M} \frac{1}{\lambda_{m}}}_{\mathsf{Variance}}$$

 $S = \mathsf{span}\{1, x, \dots, x^M\}$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(M,N)}\|_{L^{2}}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_{M}}} \|h - \Pi_{S}h\|_{L^{2}}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^{M} \frac{1}{\lambda_{m}}}}_{\mathsf{Variance}}$$

$$S = \mathsf{span}\{1, x, \dots, x^M\}$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla \phi - \nabla \phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

 $S = \mathsf{span}\{1, x, \dots, x^M\}$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla \phi - \nabla \phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

$$S = \mathsf{span}\{1, x, \dots, x^M\}$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla \phi - \nabla \phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

$$S = \mathsf{span}\{1, x, \dots, x^M\}$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla \phi - \nabla \phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

$$S = \mathsf{span}\{1, x, \dots, x^M\}$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla \phi - \nabla \phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

$$S = \mathsf{span}\{1, x, \dots, x^M\}$$

Choice of basis function is difficult

$$\mathsf{E}\left[\|\nabla\phi - \nabla\phi^{(M,N)}\|_{L^2}\right] \leq \underbrace{\frac{1}{\sqrt{\lambda_M}} \|h - \Pi_S h\|_{L^2}}_{\mathsf{Bias}} + \underbrace{\frac{1}{\sqrt{N}} \|h\|_{\infty} \sqrt{\sum_{m=1}^M \frac{1}{\lambda_m}}}_{\mathsf{Variance}}$$

Poisson equation

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

 $-\Delta_{a}\phi = h - \hat{h}$

Step 2: Diffusion map approximation:

$$T_{\epsilon}f(x) := \frac{1}{n_{\epsilon}(x)} \int g_{\epsilon}(x,y) \frac{f(y)\rho(y)}{\sqrt{(g_{\epsilon}*\rho)(y)}} \mathrm{d}y \stackrel{\epsilon\downarrow 0}{\approx} P_{\epsilon}f(x)$$

Step 3: Empirical approximation

$$T_{\epsilon}^{(N)}f(x) := \frac{1}{n_{\epsilon}^{(N)}(x)} \sum_{i=1}^{N} g_{\epsilon}(x, X^{i}) \frac{f(X^{i})}{\sqrt{\sum_{j=1}^{N} g_{\epsilon}(X^{i}, X^{j})}} \stackrel{N\uparrow\infty}{\approx} T_{\epsilon}f(x)$$

M. Hein, J. Audibert, and U. Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, JMLR, 8 (2007)

R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 21 (2006)

Poisson equation

$$-\Delta_{\rho}\phi = h - \hat{h}$$

Step 1: Semigroup formulation:

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

Step 2: Diffusion map approximation:

$$T_{\epsilon}f(x) := \frac{1}{n_{\epsilon}(x)} \int g_{\epsilon}(x,y) \frac{f(y)\rho(y)}{\sqrt{(g_{\epsilon}*\rho)(y)}} \mathrm{d}y \stackrel{\epsilon\downarrow 0}{\approx} P_{\epsilon}f(x)$$

Step 3: Empirical approximation

$$T_{\epsilon}^{(N)}f(x) := \frac{1}{n_{\epsilon}^{(N)}(x)} \sum_{i=1}^{N} g_{\epsilon}(x, X^{i}) \frac{f(X^{i})}{\sqrt{\sum_{j=1}^{N} g_{\epsilon}(X^{i}, X^{j})}} \stackrel{N \uparrow \infty}{\approx} T_{\epsilon}f(x)$$

R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 21 (2006)

M. Hein, J. Audibert, and U. Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, JMLR, 8 (2007)

Poisson equation

$$-\Delta_{\rho}\phi = h - \hat{h}$$

Step 1: Semigroup formulation:

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

Proof:
$$\frac{\partial P_t \phi}{\partial t} = P_t \Delta_{\rho} \phi = -P_t (h - \hat{h})$$

Step 2: Diffusion map approximation:

$$T_{\epsilon}f(x) := \frac{1}{n_{\epsilon}(x)} \int g_{\epsilon}(x,y) \frac{f(y)\rho(y)}{\sqrt{(g_{\epsilon} * \rho)(y)}} \mathrm{d}y \stackrel{\epsilon \downarrow 0}{\approx} P_{\epsilon}f(x)$$

Step 3: Empirical approximation

$$T_{\epsilon}^{(N)}f(x) := \frac{1}{n_{\epsilon}^{(N)}(x)} \sum_{i=1}^{N} g_{\epsilon}(x, X^{i}) \frac{f(X^{i})}{\sqrt{\sum_{j=1}^{N} g_{\epsilon}(X^{i}, X^{j})}} \stackrel{N \uparrow \infty}{\approx} T_{\epsilon}f(x)$$

R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 21 (2006)

M. Hein, J. Audibert, and U. Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, JMLR, 8 (2007)

Poisson equation

$$-\Delta_{\rho}\phi = h - \hat{h}$$

Step 1: Semigroup formulation:

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) \mathrm{d}s$$

Step 2: Diffusion map approximation:

$$T_{\epsilon}f(x) := \frac{1}{n_{\epsilon}(x)} \int g_{\epsilon}(x,y) \frac{f(y)\rho(y)}{\sqrt{(g_{\epsilon}*\rho)(y)}} \mathrm{d}y \stackrel{\epsilon\downarrow 0}{\approx} P_{\epsilon}f(x)$$

Step 3: Empirical approximation

$$T_{\epsilon}^{(N)}f(x) := \frac{1}{n_{\epsilon}^{(N)}(x)} \sum_{i=1}^{N} g_{\epsilon}(x, X^{i}) \frac{f(X^{i})}{\sqrt{\sum_{j=1}^{N} g_{\epsilon}(X^{i}, X^{j})}} \stackrel{N\uparrow\infty}{\approx} T_{\epsilon}f(x)$$

M. Hein, J. Audibert, and U. Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, JMLR, 8 (2007)

R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 21 (2006)

Step 2: Diffusion map approximation:

$$T_{\epsilon}f(x) := \frac{1}{n_{\epsilon}(x)} \int g_{\epsilon}(x,y) \frac{f(y)\rho(y)}{\sqrt{(g_{\epsilon}*\rho)(y)}} \mathrm{d}y \stackrel{\epsilon\downarrow 0}{\approx} P_{\epsilon}f(x)$$

Step 3: Empirical approximation

$$T_{\epsilon}^{(N)}f(x) := \frac{1}{n_{\epsilon}^{(N)}(x)} \sum_{i=1}^{N} g_{\epsilon}(x, X^{i}) \frac{f(X^{i})}{\sqrt{\sum_{j=1}^{N} g_{\epsilon}(X^{i}, X^{j})}} \stackrel{N \uparrow \infty}{\approx} T_{\epsilon}f(x)$$

R. Coifman and S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 21 (2006)

M. Hein, J. Audibert, and U. Luxburg, Graph Laplacians and their convergence on random neighborhood graphs, JMLR, 8 (2007)

(II) Diffusion map-based algorithm Overview

Poisson equation

$$-\Delta_{\rho}\phi = h - \hat{h}$$

Step 1: Semigroup formulation:

Gain function approximation: Diffusion map-based algorithm Overview

Poisson eq.:
$$-\Delta_{\rho}\phi = h - \hat{h}, \quad \phi \in H^1_0(\rho)$$

(approximation steps)

Finite-dim eq.: $\Phi = \mathsf{T}\Phi + \epsilon(\mathsf{h} - \pi(h)), \quad \Phi \in \mathbb{R}_0^N$

T is a $N \times N$ Markov matrix

- $k_{\epsilon}^{(N)}(x,y)$ is the diffusion map kernel (Coifman & Lafon, 2006)
- The solution $\Phi \approx (\phi(X^1), \dots, \phi(X^N))$

Gain function approximation: Diffusion map-based algorithm Overview

Poisson eq.:
$$-\Delta_{\rho}\phi = h - \hat{h}, \quad \phi \in H^1_0(\rho)$$

(approximation steps)

Finite-dim eq.: $\Phi = \mathsf{T}\Phi + \epsilon(\mathsf{h} - \pi(h)), \quad \Phi \in \mathbb{R}_0^N$

• The solution $\Phi \approx (\phi(X^1), \dots, \phi(X^N))$

Properties:

- No basis function selection
- Computationally scales well with dimension $O(N^2d)$.
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension O(N²d).
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension O(N²d).
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension O(N²d).
- Converges to constant gain in the limit as $\epsilon \to \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension O(N²d).
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension $O(N^2 d)$.
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension $O(N^2 d)$.
- Converges to constant gain in the limit as $\epsilon
 ightarrow \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension $O(N^2d)$.
- \blacksquare Converges to constant gain in the limit as $\epsilon \to \infty$

Properties:

- No basis function selection
- Computationally scales well with dimension $O(N^2d)$.
- \blacksquare Converges to constant gain in the limit as $\epsilon \to \infty$

Gain function approximation: Diffusion map-based algorithm Approximation steps overview

$$\phi = P_{\epsilon}\phi + \int_{0}^{\epsilon} P_{s}(h - \hat{h}) ds$$
$$\phi_{\epsilon} = T_{\epsilon}\phi_{\epsilon} + \epsilon(h - \hat{h}_{\epsilon})$$

$$\phi_{\epsilon}^{(N)} = T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)} + \epsilon (h - \hat{h}_{\epsilon}^{(N)})$$

Error analysis:

- Bias: Study convergence $\phi_{\epsilon} \rightarrow \phi$ as $\epsilon \rightarrow 0$
- Variance: Study convergence $\phi_\epsilon^{(N)} o \phi_\epsilon$ as $N o \infty$

Gain function approximation: Diffusion map-based algorithm Approximation steps overview

Error analysis:

- Bias: Study convergence $\phi_{\epsilon} \rightarrow \phi$ as $\epsilon \rightarrow 0$
- \blacksquare Variance: Study convergence $\phi_{\epsilon}^{(N)} \rightarrow \phi_{\epsilon}$ as $N \rightarrow \infty$

Gain function approximation: Error analysis Bias

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) ds$$
 and $\phi_\epsilon = T_\epsilon \phi_\epsilon + \epsilon(h - \hat{h}_\epsilon)$

Proposition (TMM'19)

I For all functions $f, \nabla f \in L^4(\rho)$

$$\|T_{\frac{t}{n}}^{n}f - P_{t}f\|_{L^{2}(\rho)} \leq \frac{(\text{const.})}{n} (\|f\|_{L^{4}(\rho)} + \|\nabla f\|_{L^{4}(\rho)})$$

2 $T^n_{rac{t}{n}}$ admits a uniform spectral gap on $L^2_0(
ho_\epsilon)$ and

 $\|\phi_{\epsilon}\|_{L^{2}(\rho_{\epsilon})} \leq (\text{const.})\|h\|_{L^{2}(\rho_{\epsilon})}$

3 In the asymptotic limit as $\epsilon \to 0$

$$\|\phi_{\epsilon} - \phi\|_{L^2(\rho)} \le O(\epsilon)$$

Proof of 1: Feynman-Kac representation of semigroup
 Proof of 2: Foster-Lyapunov condition from stochastic stability theory

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. 2012.

Gain function approximation: Error analysis Bias

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) ds$$
 and $\phi_\epsilon = T_\epsilon \phi_\epsilon + \epsilon(h - \hat{h}_\epsilon)$

Proposition (TMM'19)

1 For all functions $f, \nabla f \in L^4(\rho)$

$$\|T_{\frac{t}{n}}^{n}f - P_{t}f\|_{L^{2}(\rho)} \leq \frac{(\text{const.})}{n}(\|f\|_{L^{4}(\rho)} + \|\nabla f\|_{L^{4}(\rho)})$$

2 $T^n_{\frac{t}{2}}$ admits a uniform spectral gap on $L^2_0(\rho_{\epsilon})$ and

 $\|\phi_{\epsilon}\|_{L^{2}(\rho_{\epsilon})} \leq (\text{const.})\|h\|_{L^{2}(\rho_{\epsilon})}$

3 In the asymptotic limit as $\epsilon \to 0$

$$\|\phi_{\epsilon} - \phi\|_{L^2(\rho)} \le O(\epsilon)$$

Proof of 1: Feynman-Kac representation of semigroup
 Proof of 2: Foster-Lyapunov condition from stochastic stability theory

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. 2012.

Gain function approximation: Error analysis Bias

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) ds$$
 and $\phi_\epsilon = T_\epsilon \phi_\epsilon + \epsilon(h - \hat{h}_\epsilon)$

Proposition (TMM'19)

1 For all functions $f, \nabla f \in L^4(\rho)$

$$\|T_{\frac{t}{n}}^{n}f - P_{t}f\|_{L^{2}(\rho)} \leq \frac{(\text{const.})}{n}(\|f\|_{L^{4}(\rho)} + \|\nabla f\|_{L^{4}(\rho)})$$

2 $T^n_{\frac{t}{n}}$ admits a uniform spectral gap on $L^2_0(\rho_{\epsilon})$ and

 $\|\phi_{\epsilon}\|_{L^{2}(\rho_{\epsilon})} \leq (\text{const.})\|h\|_{L^{2}(\rho_{\epsilon})}$

3 In the asymptotic limit as $\epsilon \to 0$

$$\|\phi_{\epsilon} - \phi\|_{L^2(\rho)} \le O(\epsilon)$$

Proof of 1: Feynman-Kac representation of semigroup
 Proof of 2: Foster-Lyapunov condition from stochastic stability theory

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. 2012.
Gain function approximation: Error analysis Bias

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) ds$$
 and $\phi_\epsilon = T_\epsilon \phi_\epsilon + \epsilon(h - \hat{h}_\epsilon)$

Proposition (TMM'19)

1 For all functions $f, \nabla f \in L^4(\rho)$

$$\|T_{\frac{t}{n}}^{n}f - P_{t}f\|_{L^{2}(\rho)} \leq \frac{(\text{const.})}{n}(\|f\|_{L^{4}(\rho)} + \|\nabla f\|_{L^{4}(\rho)})$$

2 $T^n_{\frac{t}{n}}$ admits a uniform spectral gap on $L^2_0(
ho_\epsilon)$ and

 $\|\phi_{\epsilon}\|_{L^{2}(\rho_{\epsilon})} \leq (\text{const.})\|h\|_{L^{2}(\rho_{\epsilon})}$

B In the asymptotic limit as $\epsilon \to 0$

$$\|\phi_{\epsilon} - \phi\|_{L^{2}(\rho)} \le O(\epsilon)$$

Proof of 1: Feynman-Kac representation of semigroup
 Proof of 2: Foster-Lyapunov condition from stochastic stability theory

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. 2012.

Gain function approximation: Error analysis Bias

$$\phi = P_t \phi + \int_0^t P_s(h - \hat{h}) ds$$
 and $\phi_\epsilon = T_\epsilon \phi_\epsilon + \epsilon(h - \hat{h}_\epsilon)$

Proposition (TMM'19)

1 For all functions $f, \nabla f \in L^4(\rho)$

$$\|T_{\frac{t}{n}}^{n}f - P_{t}f\|_{L^{2}(\rho)} \leq \frac{(\text{const.})}{n}(\|f\|_{L^{4}(\rho)} + \|\nabla f\|_{L^{4}(\rho)})$$

2 $T^n_{rac{t}{n}}$ admits a uniform spectral gap on $L^2_0(
ho_\epsilon)$ and

 $\|\phi_{\epsilon}\|_{L^{2}(\rho_{\epsilon})} \leq (\text{const.})\|h\|_{L^{2}(\rho_{\epsilon})}$

B In the asymptotic limit as $\epsilon \to 0$

$$\|\phi_{\epsilon} - \phi\|_{L^2(\rho)} \le O(\epsilon)$$

Proof of 1: Feynman-Kac representation of semigroup
 Proof of 2: Foster-Lyapunov condition from stochastic stability theory

S. P. Meyn and R. L. Tweedie. Markov chains and stochastic stability. 2012.

Gain function approximation: Error analysis Variance

$$\phi_{\epsilon}^{(N)} = T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)} + \epsilon (h - \hat{h}_{\epsilon}^{(N)}) \quad \text{and} \quad \phi_{\epsilon} = T_{\epsilon} \phi_{\epsilon} + \epsilon (h - \hat{h}_{\epsilon})$$

Proposition (TMM'19)

For any bounded function f and for all $x \in \mathbb{R}^d$:

$$\lim_{N \to \infty} T_{\epsilon}^{(N)} f(x) = T_{\epsilon} f(x), \quad \text{a.s}$$

For any $\delta \in (0,1)$

$$\|T_{\epsilon}^{(N)}f - T_{\epsilon}f\|_{L^{2}(\rho)}^{2} \le O(\frac{\log(\frac{N}{\delta})}{N\epsilon^{d}})$$

with probability larger than $1 - \delta$

If the distribution ρ has compact support

$$\lim_{N \to \infty} \|\phi_{\epsilon}^{(N)} - \phi_{\epsilon}\|_{\infty} = 0, \quad \text{a.s}$$

Approach: Numerical analysis of integral equations on a grid (Anselone, 1971, Atkinson, 1976)

Gain function approximation: Error analysis Variance

$$\phi_{\epsilon}^{(N)} = T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)} + \epsilon (h - \hat{h}_{\epsilon}^{(N)}) \quad \text{and} \quad \phi_{\epsilon} = T_{\epsilon} \phi_{\epsilon} + \epsilon (h - \hat{h}_{\epsilon})$$

Proposition (TMM'19)

For any bounded function f and for all $x \in \mathbb{R}^d$:

$$\lim_{N \to \infty} T_{\epsilon}^{(N)} f(x) = T_{\epsilon} f(x), \quad \text{a.s}$$

 $\bullet \ \ \, {\rm For \ any} \ \, \delta \in (0,1)$

$$\|T_{\epsilon}^{(N)}f - T_{\epsilon}f\|_{L^{2}(\rho)}^{2} \le O(\frac{\log(\frac{N}{\delta})}{N\epsilon^{d}})$$

- with probability larger than $1-\delta$
- If the distribution ρ has compact support

$$\lim_{N \to \infty} \|\phi_{\epsilon}^{(N)} - \phi_{\epsilon}\|_{\infty} = 0, \quad \text{a.s}$$

Approach: Numerical analysis of integral equations on a grid (Anselone, 1971, Atkinson, 1976)

Gain function approximation: Error analysis Variance

$$\phi_{\epsilon}^{(N)} = T_{\epsilon}^{(N)} \phi_{\epsilon}^{(N)} + \epsilon (h - \hat{h}_{\epsilon}^{(N)}) \quad \text{and} \quad \phi_{\epsilon} = T_{\epsilon} \phi_{\epsilon} + \epsilon (h - \hat{h}_{\epsilon})$$

Proposition (TMM'19)

For any bounded function f and for all $x \in \mathbb{R}^d$:

$$\lim_{N \to \infty} T_{\epsilon}^{(N)} f(x) = T_{\epsilon} f(x), \quad \text{a.s}$$

 $\bullet \ \ \, {\rm For \ any} \ \, \delta \in (0,1)$

$$\|T_{\epsilon}^{(N)}f - T_{\epsilon}f\|_{L^{2}(\rho)}^{2} \le O(\frac{\log(\frac{N}{\delta})}{N\epsilon^{d}})$$

with probability larger than $1-\delta$

If the distribution ρ has compact support

$$\lim_{N \to \infty} \|\phi_{\epsilon}^{(N)} - \phi_{\epsilon}\|_{\infty} = 0, \quad \text{a.s}$$

Approach: Numerical analysis of integral equations on a grid (Anselone, 1971, Atkinson, 1976)

Error estimate:

Setup:
$$\rho(x) = \rho_{\text{bimodal}}(x_1) \prod_{n=2}^{\infty} \rho_{\text{Gaussian}}(x_n)$$
 and $h(x) = x_1$.

Convergence to const. gain approx.:

$$\lim_{\epsilon o\infty}\;\mathsf{K}_{\epsilon}^{(N)}=\mathsf{const.}$$
 gain approximatoir

Error estimate:

$$\mathsf{r.m.s.e} \leq \underbrace{O(\epsilon)}_{\mathsf{bias}} + \underbrace{O(\frac{1}{\epsilon^{1+d/2}N^{1/2}})}_{\mathsf{variance}}$$

Setup:
$$\rho(x) = \rho_{\text{bimodal}}(x_1) \prod_{n=2}^{a} \rho_{\text{Gaussian}}(x_n)$$
 and $h(x) = x_1$.

Convergence to const. gain approx.:

$$\lim_{\epsilon o \infty} \; \mathsf{K}^{(N)}_{\epsilon} = \mathsf{const.}$$
 gain approximatoir

Error estimate:

$$\mathsf{r.m.s.e} \leq \underbrace{O(\epsilon)}_{\mathsf{bias}} + \underbrace{O(\frac{1}{\epsilon^{1+d/2}N^{1/2}})}_{\mathsf{variance}}$$

Setup:
$$\rho(x) = \rho_{\text{bimodal}}(x_1) \prod_{n=2}^{a} \rho_{\text{Gaussian}}(x_n)$$
 and $h(x) = x_1$.

Convergence to const. gain approx.:

$$\lim_{\epsilon o \infty} \ \mathsf{K}^{(N)}_{\epsilon} = \mathsf{const.}$$
 gain approximatoin

Error estimate:

Setup:
$$\rho(x) = \rho_{\text{bimodal}}(x_1) \prod_{n=2}^{d} \rho_{\text{Gaussian}}(x_n)$$
 and $h(x) = x_1$.

Convergence to const. gain approx.:

 $\lim_{\epsilon \to \infty} \ \mathsf{K}_{\epsilon}^{(N)} = \mathsf{const.} \ \mathsf{gain} \ \mathsf{approximatoin}$

Feedback particle filter Numerical example

Model:

$$dX_t = 0, \quad X_0 \sim \pi_0$$
$$dZ_t = |X_t| dt + \sigma_w dW_t$$

Numerical result:

Feedback particle filter Numerical example

Model:

$$dX_t = 0, \quad X_0 \sim \pi_0$$
$$dZ_t = |X_t| dt + \sigma_w dW_t$$

Numerical result:

Conclusion

Feedback Particle filter:

- Gain function approximation: Diffusion-map based algorithm and its error analysis
- Optimality properties of control law: An optimal transport formulation of FPF
- Error analysis of the overall algorithm: Error analysis in linear Gaussian setting

Question: Can the three questions addressed in a single framework?

References:

- A. Taghvaei, P. G. Mehta, S. P. Meyn, Diffusion map-based algorithm for gain function approximation in the feedback particle filter, 2019
- A. Taghvaei, P. G. Mehta, An optimal transport formulation of the ensemble Kalman filter, 2019
- A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. (ASME), 2017

Conclusion

Feedback Particle filter:

- Gain function approximation: Diffusion-map based algorithm and its error analysis
- Optimality properties of control law: An optimal transport formulation of FPF
- \blacksquare Error analysis of the overall algorithm: Error analysis in linear Gaussian setting

Question: Can the three questions addressed in a single framework?

References:

- A. Taghvaei, P. G. Mehta, S. P. Meyn, Diffusion map-based algorithm for gain function approximation in the feedback particle filter, 2019
- A. Taghvaei, P. G. Mehta, An optimal transport formulation of the ensemble Kalman filter, 2019
- A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. (ASME), 2017

Conclusion

Feedback Particle filter:

- Gain function approximation: Diffusion-map based algorithm and its error analysis
- Optimality properties of control law: An optimal transport formulation of FPF
- Error analysis of the overall algorithm: Error analysis in linear Gaussian setting

Question: Can the three questions addressed in a single framework?

References:

- A. Taghvaei, P. G. Mehta, S. P. Meyn, Diffusion map-based algorithm for gain function approximation in the feedback particle filter, 2019
- A. Taghvaei, P. G. Mehta, An optimal transport formulation of the ensemble Kalman filter, 2019
- A. Taghvaei, J de Wiljes, P. G. Mehta, and S. Reich. Kalman filter and its modern extensions for the continuous-time nonlinear filtering problem. (ASME), 2017

Stochastic thermodynamics:

Optimality analysis of the power for stochastic thermodynamic systems

Optimal transport map estimation:

Numerical estimation of the optimal transport map using input convex neural networks.

Accelerated flow for probability distribution:

Variational formulation of accelerated gradient flows for probability distributions

Thanks for your attention!