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Mathematics of uncertainty

Probability theory: (quantify uncertainty)

Optimal transport (OT) theory: (geometry for distributions)

Nobel prize (1975) Fields medal (2010)

This talk: application of OT to uncertainty quantification
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Outline

Part I: Bayes’ law and importance sampling

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering
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Bayes’ law

Problem:

Hidden random variable X

Observed random variable Y

What is the conditional probability distribution of X given Y ? (posterior)

Bayes’ law: PX|Y =
PXPY |X

PY

Simple to express, but difficult to implement, both intuitively and numerically
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Bayes’ law
When intuition fails

Two children puzzle:

Smiths family has two children

At least, one of them is a girl

What is the probability that Smiths have two girls?

What if you are told she is born on Tuesday?

And her name is Florida.

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019
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Bayes’ law
When numerics fail

Example:

X ∼ N (0, 1)

Y =
1

2
X2 + ϵW

PX|Y =1 =?

Importance sampling (IS):

Xi i.i.d∼ N (0, 1)

wi ∝ P (Y = 1|Xi)

PX|Y =1 ≈
N∑
i=1

wiδXi

−3 −2 −1 0 1 2 3
X

PX|Y=1

small noise regime: ϵ → 0

This is the main reason for the curse of dimensionality of IS-based particle filters
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Curse of dimensionality in particle filters

X,Y ∈ Rn with i.i.d. components.

Exact posterior: πexact

IS approximation: π
(N)
IS

Asymptotic limit as N → ∞:

lim
N→∞

√
Nd(πexact, π

(N)
IS ) = Cγn

where d(·, ·) is the dual bounded metric.

Good news: accurate as N → ∞ (universal for any prior and likelihood)

Bad news: error scales exponentially with the dimension n

Remedy: exploit problem specific properties (e.g. spatial correlation decay in
localization methods)

Alternative method: replacing IS with control or coupling-based techniques

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)
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Coupling/Control viewpoint

Xi ∼ PX −→ T (Xi, y) ∼ PX|Y =y

Example:

Consider Y = X. Then, PX|Y =y = δy is represented by the map T (x, y) = y

Consider jointly Gaussian (X,Y ). Then PX|Y =y is represented by the (stochastic)
map X 7→ X +K(y − Y )

How to numerically find the map T in a
general setting?
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Literature survey
Control and coupling techniques for filtering and Bayesian inference

Particle flow filters [Daum et. al. 2010]

A dynamical systems framework for data assimilation [Reich. 2011]

Mean-field control approach [Yang, Mehta, Meyn, 2011]
→ Feedback Particle Filter (FPF)

Posterior Matching via optimal transportation [Ma & Coleman, 2011]

Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

Recent surveys:
Spantini et. al. (2022). Coupling techniques for nonlinear ensemble filtering. SIAM Review

A. Taghvaei, and P. G. Mehta, (2023). A survey of feedback particle filter and related controlled inter-
acting particle systems (CIPS). Annual Reviews in Control

This talk: Optimal Transport (OT) Method
A. Taghvaei, and B. Hosseini, (2022). An optimal transport formulation of Bayes’ law for nonlinear
filtering algorithms. IEEE Conference on Decision and Control (CDC)

M. Al-Jarrah, B. Hosseini, and A. Taghvaei (2023). Optimal transport particle filters. IEEE Conference
on Decision and Control (CDC)
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Background on optimal transportation theory
Monge problem and Brenier’s result

Given two random variables U ∼ PU and V ∼ PV

find a map x 7→ T (x) that transports PU to PV , i.e. T#PU = PV or T (U)
d
= V

with minimal transportation cost ∥T (x)− x∥2

Brenier’s result

If PU admits (Lebesgue) density, the optimal map T = ∇f where f minimizes

min
f is convex

E[f(U) + f∗(V )]
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Conditioning with optimal transport map
Illustrative example

−→

?−−−−→
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Conditioning with optimal transport map
Illustrative example

(T (X,Y ),Y )−−−−−−−−→

−−−−−−−−−−−−−→

small noise limit
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Conditioning with optimal transport map
Variational formulation of the Bayes’ law

Bayes law: PX|Y =
PXPY |X

PY

= ∇xf̄(·;Y )#PX

where f̄ = argmin
f∈L1(X×Y)

E(X,Y )∼PX⊗PY
[f(X;Y )] + E(X,Y )∼PXY

[f⋆(X;Y )]

Computational properties:

Only requires samples (Xi, Yi) ∼ PXY (data-driven/simulation based)

Enables construction of “approximate” posterior distributions

Allows application of ML tools (stochastic optimization and neural nets)
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Conditioning with optimal transport map
Theoretical analysis

(X,Y ) ∼ PX,Y and (X̄, Y ) ∼ PX ⊗ PY

Variational problem: min
f

J(f, PX,Y ) := E[f(X̄, Y ) + f∗(X,Y )]

(Conditional) Brenier’s theorem

(Well-posedness) If PX admits (Lebesgue) density, then, there exists a unique
function f that solves the variational problem and

∇f(·, y)#PX = PX|Y =y, a.e y

(Sensitivity) Let f be a possibly non-optimal function. Assume x 7→ f(x, y) is
convex and β-smooth for all y. Then,

d(∇f(·, Y )#PX , PX|Y ) ≤
√

2β
(
J(f)− J(f)

)
.

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Amirhossein Taghvaei 12 / 23 Amirhossein Taghvaei



Conditioning with optimal transport map
Theoretical analysis

(X,Y ) ∼ PX,Y and (X̄, Y ) ∼ PX ⊗ PY

Variational problem: min
f

J(f, PX,Y ) := E[f(X̄, Y ) + f∗(X,Y )]

(Conditional) Brenier’s theorem

(Well-posedness) If PX admits (Lebesgue) density, then, there exists a unique
function f that solves the variational problem and

∇f(·, y)#PX = PX|Y =y, a.e y

(Sensitivity) Let f be a possibly non-optimal function. Assume x 7→ f(x, y) is
convex and β-smooth for all y. Then,

d(∇f(·, Y )#PX , PX|Y ) ≤
√

2β
(
J(f)− J(f)

)
.

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Amirhossein Taghvaei 12 / 23 Amirhossein Taghvaei



Conditioning with optimal transport map
Theoretical analysis

(X,Y ) ∼ PX,Y and (X̄, Y ) ∼ PX ⊗ PY

Variational problem: min
f

J(f, PX,Y ) := E[f(X̄, Y ) + f∗(X,Y )]

(Conditional) Brenier’s theorem

(Well-posedness) If PX admits (Lebesgue) density, then, there exists a unique
function f that solves the variational problem and

∇f(·, y)#PX = PX|Y =y, a.e y

(Sensitivity) Let f be a possibly non-optimal function. Assume x 7→ f(x, y) is
convex and β-smooth for all y. Then,

d(∇f(·, Y )#PX , PX|Y ) ≤
√

2β
(
J(f)− J(f)

)
.

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Amirhossein Taghvaei 12 / 23 Amirhossein Taghvaei



Outline

Part I: Bayes’ law and importance sampling

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering

Amirhossein Taghvaei 12 / 23 Amirhossein Taghvaei



Outline

Part I: Bayes’ law and importance sampling

Part II: Conditioning with optimal transport maps

Part III: Application to nonlinear filtering

Amirhossein Taghvaei 12 / 23 Amirhossein Taghvaei



Nonlinear filtering problem

Xt is the state (unknown)

Yt is the observation

Questions: Given history of observation Y1:t := {Y1, . . . , Yt},
What is the most likely value of Xt?

What is the probability of Xt ∈ A?

What is the best m.s.e estimate for Xt?

. . .

Answer: given by the conditional distribution πt = PXt|Y1:t
(posterior, belief)

Nonlinear filtering: numerical approximation of the posterior πt for all t.
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Filtering equations

πt := P(Xt|Y1:t)

Two important operations:

Propagation: π
dynamics

−−−−→ Aπ

Conditioning: π
Bayes law

−−−−→ By(π)

Recursive update law for the posterior

πt−1

dynamics

−−−−→ Aπt−1

Bayes law

−−−−→ BYt(Aπt−1) =: Tt,t−1(πt−1)

(Exponential) filter stability : ∃λ ∈ (0, 1) s.t.

d(Tt,0(π0), Tt,0(π̃0)) ≤ Cλkd(π0, π̃0), ∀π0, π̃0.
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Optimal Transport Filter
No dynamics setting (for simplicity)

Filter design steps:

exact posterior: πt = BYt(πt−1)

mean-field process: X̄t = ∇f t(X̄t−1, Yt)

particle system: Xi
t = ∇f̂t(X

i
t−1, Yt)

Variational problem:

= argmin
f

J(f, PXt,Yt)

f̂t = argmin
f∈F

J(f,
1

N

N∑
i=1

δ(Xi
t ,Y

i
t ))

Posterior approximation:

πt ≈ π̂
(N)
t =

1

N

N∑
i=1

δXi
t
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Optimal Transport Filter
Error Analysis

Theorem

Assume

1 The exact filter is exponentially stable

2 Uniform bound ϵF,N on the optimality gap J(f̂t)− J(f t)

3 The function f̂t(·, y) is convex and β-smooth for all t and y.

4 Particles are resampled at each step

Then,

d(
1

N

N∑
i=1

δXi
t
, πt) ≤ C

(√
2βϵF,N +

1√
N

)
, ∀t.

Optimality gap ϵF,N has bias-variance decomposition

ϵF,N ≤ ϵF︸︷︷︸
approx. theory

+
CF√
N︸︷︷︸

statistical generalization
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = Xt + σWWt,

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example

Xt = (1 − α)Xt−1 + σV Vt, X0 ∼ N (0, In),

Yt = X
2
t + σWWt,

0 1 2 3 4 5
time

0.1

0.2

0.3

0.4

0.5

M
M
D

EnKF
OT
SIR

Ensemble Kalman filter (EnKF)

sequential importance re-sampling (SIR)

Optimal Transport (OT)
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Optimal Transport Filter
Numerical example: Lorenz 63

Trajectory of the particles

mean-squared error (mse) in estimating the state
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

True image

Observed part

     EnKF      OT      SIR
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Numerical example: Image in-painting

X ∼ N(0, I100),

Yt = h(G(X), ct) + Wt,

G : R100 → R28×28(pre-trained generator)

t=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OT
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Numerical example: Attitude estimation

Ro
bo

t o
rie

nt
ati

on

θ

ℓ

Y

Robot location
Room center

−1.00−0.75−0.50−0.250.000.250.500.751.00 −1.00
−0.75

−0.50
−0.25

0.00
0.25

0.50
0.75

1.00
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

Pθ (prior)
Pθ|Y (exact posterior)
̂Pθ|Y (est. posterior)

D. Grange, M. Al-Jarrah, R. Baptista, A. Taghvaei, T. Georgiou, S. Phillips, A. Tannenbaum, Computational optimal transport and filtering on Riemannian
manifolds, IEEE Control Systems Letters, 2023
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Summary

Mathematical model:

Nonlinear filtering: compute the posterior πk = P(Xk|Y1:k)

OT approach:

Variational problem:

Tk = ∇xf̄k, where f̄k = argmin
f∈F

J(N)(f ; {(Xi
k, Y

i
k )})
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