Variational Optimal Transport Methods for Nonlinear Filtering

Presented at 7th Workshop on Cognition and Control Univ. of Florida, Gainsville, Jan. 2024

Amirhossein Taghvaei

Department of Aeronautics & Astronautics University of Washington, Seattle

Jan 26, 2024

Navigation

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Navigation

Weather forecast

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Navigation

COVID-19

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Navigation

Weather forecast

COVID-19

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Probability theory: (quantify uncertainty)

Optimal transport (OT) theory: (geometry for distributions)

Probability theory: (quantify uncertainty)

Probability theory: (quantify uncertainty)

Optimal transport (OT) theory: (geometry for distributions)

Nobel prize (1975) Fields medal (2010)

Probability theory: (quantify uncertainty)

Optimal transport (OT) theory: (geometry for distributions)

Nobel prize (1975) Fields medal (2010)

Outline

- **Part I:** Bayes' law and importance sampling
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part III:** Application to nonlinear filtering

Outline

Part I: Bayes' law and importance sampling

-
- **Part III:** Application to nonlinear filtering

Bayes' law

Problem:

- **Hidden random variable** X
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Bayes' law

Problem:

- **Hidden random variable X**
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Bayes' law

Problem:

- **Hidden random variable X**
- \blacksquare Observed random variable Y
- What is the conditional probability distribution of X given Y? (posterior)

Bayes' law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

Simple to express, but difficult to implement, both intuitively and numerically

- **Smiths family has two children**
-
-
-
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

- **Smiths family has two children**
- At least, one of them is a girl
-
-
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

- **Smiths family has two children**
- At least, one of them is a girl
- What is the probability that Smiths have two girls?
-
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Two children puzzle:

- **Smiths family has two children**
- At least, one of them is a girl
- What is the probability that Smiths have two girls?
-
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

- **Smiths family has two children**
- At least, one of them is a girl
- What is the probability that Smiths have two girls?
- What if you are told she is born on Tuesday?
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

- **Smiths family has two children**
- At least, one of them is a girl $\mathcal{L}_{\mathcal{A}}$
- What is the probability that Smiths have two girls?
- What if you are told she is born on Tuesday?
-

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

- **Smiths family has two children**
- At least, one of them is a girl $\mathcal{L}_{\mathcal{A}}$
- What is the probability that Smiths have two girls?
- What if you are told she is born on Tuesday?
- And her name is Florida.

I. Stewart, Do Dice Play God? The Mathematics of Uncertainty. United States: Basic Books. 2019

Example:

 \blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$ $P_{X|Y=1}$ =?

Example:

 \blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$

$$
P_{X|Y=1} = ?
$$

Importance sampling (IS):

■
$$
X^i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0,1)
$$

=
$$
w^i \propto P(Y=1|X^i)
$$

=
$$
P_{X|Y=1} \approx \sum^N w^i \delta_{X^i}
$$

Example:

 \blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$

$$
P_{X|Y=1}=?
$$

Importance sampling (IS):

$$
X^i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1)
$$

$$
w^i \propto P(Y = 1 | X^i)
$$

$$
P_{X|Y=1} \approx \sum^N w^i \delta_{X^i}
$$

Example:

\blacksquare X ~ $\mathcal{N}(0,1)$ $Y=\frac{1}{2}$ $\frac{1}{2}X^2 + \epsilon W$

$$
P_{X|Y=1}=?
$$

Importance sampling (IS):

■
$$
X^i \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(0, 1)
$$

\n■ $w^i \propto P(Y = 1 | X^i)$
\n■ $P_{X|Y=1} \approx \sum_{i=1}^N w^i \delta_{X^i}$

−3 −2 −1 0 1 2 3 X Likelihood Particle weight

small noise regime: $\epsilon \to 0$

small noise regime: $\epsilon \to 0$

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
-

$$
\lim_{N\to\infty}\sqrt{N}d(\pi_{\mathsf{exact}},\pi_{\mathsf{IS}}^{(N)})=C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
-
-
-

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
- Asymptotic limit as $N \to \infty$:

$$
\lim_{N \to \infty} \sqrt{N} d(\pi_{\text{exact}}, \pi_{\text{IS}}^{(N)}) = C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
-
-
-

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
- Asymptotic limit as $N \to \infty$:

$$
\lim_{N \to \infty} \sqrt{N} d(\pi_{\text{exact}}, \pi_{\text{IS}}^{(N)}) = C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
-
-
-

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
- Asymptotic limit as $N \to \infty$:

$$
\lim_{N \to \infty} \sqrt{N} d(\pi_{\text{exact}}, \pi_{\text{IS}}^{(N)}) = C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
- Bad news: error scales exponentially with the dimension n
-
-

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
- Asymptotic limit as $N \to \infty$:

$$
\lim_{N \to \infty} \sqrt{N} d(\pi_{\text{exact}}, \pi_{\text{IS}}^{(N)}) = C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
- Bad news: error scales exponentially with the dimension n
- Remedy: exploit problem specific properties (e.g. spatial correlation decay in localization methods)
-

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

- $X, Y \in \mathbb{R}^n$ with i.i.d. components.
- Exact posterior: π_{exact}
- IS approximation: $\pi_{\text{IS}}^{(N)}$
- Asymptotic limit as $N \to \infty$:

$$
\lim_{N \to \infty} \sqrt{N} d(\pi_{\text{exact}}, \pi_{\text{IS}}^{(N)}) = C\gamma^n
$$

- Good news: accurate as $N \to \infty$ (universal for any prior and likelihood)
- Bad news: error scales exponentially with the dimension n
- Remedy: exploit problem specific properties (e.g. spatial correlation decay in localization methods)
- Alternative method: replacing IS with control or coupling-based techniques

P. Del Moral, A.Guionnet. On the stability of interacting processes with applications to filtering and genetic algorithms. (2001)

P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).

P. Rebeschini and R. Van Handel, Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability, (2015)

Coupling/Control viewpoint

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

How to numerically find the map T in a

Coupling/Control viewpoint

$$
X^i \sim P_X \implies T(X^i, y) \sim P_{X|Y=y}
$$

Example:

Consider $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$

map $X \mapsto X + K(y - Y)$

How to numerically find the map T in a

Coupling/Control viewpoint

$$
X^i \sim P_X \longrightarrow T(X^i, y) \sim P_{X|Y=y}
$$

Example:

- **Consider** $Y = X$. Then, $P_{X|Y=y} = \delta_y$ is represented by the map $T(x, y) = y$
- Gonsider jointly Gaussian (X, Y) . Then $P_{X|Y=y}$ is represented by the (stochastic) map $X \mapsto X + K(y - Y)$

How to numerically find the map T in a general setting?
- Particle flow filters [Daum et. al. 2010]
- A dynamical systems framework for data assimilation [Reich. 2011]
- Mean-field control approach [Yang, Mehta, Meyn, 2011] \rightarrow Feedback Particle Filter (FPF)
- Posterior Matching via optimal transportation [Ma & Coleman, 2011]
- Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

-
-

-
-
- Particle flow filters [Daum et. al. 2010]
- A dynamical systems framework for data assimilation [Reich. 2011]
- **Mean-field control approach [Yang, Mehta, Meyn, 2011]** \rightarrow Feedback Particle Filter (FPF)
- **Posterior Matching via optimal transportation** [Ma & Coleman, 2011]
- Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

Recent surveys:

- Spantini et. al. (2022). Coupling techniques for nonlinear ensemble filtering. SIAM Review
- A. Taghvaei, and P. G. Mehta, (2023). A survey of feedback particle filter and related controlled interacting particle systems (CIPS). Annual Reviews in Control

-
-
- Particle flow filters [Daum et. al. 2010]
- A dynamical systems framework for data assimilation [Reich. 2011]
- Mean-field control approach [Yang, Mehta, Meyn, 2011] \rightarrow Feedback Particle Filter (FPF)
- **Posterior Matching via optimal transportation** [Ma & Coleman, 2011]
- Bayesian inference with optimal maps [El Moselhy & Marzouk, 2012]

Recent surveys:

- Spantini et. al. (2022). Coupling techniques for nonlinear ensemble filtering. SIAM Review
- A. Taghvaei, and P. G. Mehta, (2023). A survey of feedback particle filter and related controlled interacting particle systems (CIPS). Annual Reviews in Control

This talk: Optimal Transport (OT) Method

- A. Taghvaei, and B. Hosseini, (2022). An optimal transport formulation of Bayes' law for nonlinear filtering algorithms. IEEE Conference on Decision and Control (CDC)
- M. Al-Jarrah, B. Hosseini, and A. Taghvaei (2023). Optimal transport particle filters. IEEE Conference on Decision and Control (CDC)

Outline

- **Part I:** Bayes' law and importance sampling
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part III:** Application to nonlinear filtering

Outline

Part II: Conditioning with optimal transport maps $\overline{}$

Part III: Application to nonlinear filtering

Background on optimal transportation theory

Monge problem and Brenier's result

■ Given two random variables $U \sim P_U$ and $V \sim P_V$

find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_\# P_U = P_V$ or $T(U) \stackrel{d}{=} V$ with minimal transportation cost $\|T(x)-x\|^2$

If P_U admits (Lebesgue) density, the optimal map $\overline{T} = \nabla \overline{f}$ where \overline{f} minimizes

min $\mathbb{E}[f(U) + f^*(V)]$

Background on optimal transportation theory Monge problem and Brenier's result

■ Given two random variables $U \sim P_U$ and $V \sim P_V$

find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_\# P_U = P_V$ or $T(U) \stackrel{d}{=} V$ with minimal transportation cost $\|T(x)-x\|^2$

If P_U admits (Lebesgue) density, the optimal map $\overline{T} = \nabla \overline{f}$ where \overline{f} minimizes

min $\mathbb{E}[f(U) + f^*(V)]$

Background on optimal transportation theory Monge problem and Brenier's result

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_\# P_U = P_V$ or $T(U) \stackrel{d}{=} V$
- with minimal transportation cost $\|T(x)-x\|^2$

If P_U admits (Lebesgue) density, the optimal map $\overline{T} = \nabla \overline{f}$ where \overline{f} minimizes

min $\mathbb{E}[f(U) + f^*(V)]$

Background on optimal transportation theory Monge problem and Brenier's result

- Given two random variables $U \sim P_U$ and $V \sim P_V$
- find a map $x \mapsto T(x)$ that transports P_U to P_V , i.e. $T_\# P_U = P_V$ or $T(U) \stackrel{d}{=} V$
- with minimal transportation cost $\|T(x)-x\|^2$

Brenier's result

If P_U admits (Lebesgue) density, the optimal map $\overline{T} = \nabla \overline{f}$ where \overline{f} minimizes

min $\mathbb{E}[f(U) + f^*(V)]$ is convex

small noise limit

Bayes law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

$$
= \nabla_x \bar{f}(\cdot; Y) \# P_X
$$

where
$$
\bar{f} = \underset{f \in L^1(X \times \mathcal{Y})}{\arg \min} \mathbb{E}_{(X,Y) \sim P_X \otimes P_Y}[f(X;Y)] + \mathbb{E}_{(X,Y) \sim P_{XY}}[f^*(X;Y)]
$$

-
-
- Allows application of ML tools (stochastic optimization and neural nets)

Bayes law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

= $\nabla_x \bar{f}(\cdot; Y) \# P_X$

where
$$
\bar{f} = \underset{f \in L^1(\mathcal{X} \times \mathcal{Y})}{\arg \min} \mathbb{E}_{(X,Y) \sim P_X \otimes P_Y} [f(X;Y)] + \mathbb{E}_{(X,Y) \sim P_{XY}} [f^*(X;Y)]
$$

-
-
- Allows application of ML tools (stochastic optimization and neural nets)

Bayes law:
$$
P_{X|Y} = \frac{P_X P_{Y|X}}{P_Y}
$$

= $\nabla_x \bar{f}(\cdot; Y) \# P_X$

where
$$
\bar{f} = \underset{f \in L^1(\mathcal{X} \times \mathcal{Y})}{\arg \min} \mathbb{E}_{(X,Y) \sim P_X \otimes P_Y} [f(X;Y)] + \mathbb{E}_{(X,Y) \sim P_{XY}} [f^*(X;Y)]
$$

-
-
- Allows application of ML tools (stochastic optimization and neural nets)

$$
\begin{aligned} \text{Bayes law:} \quad P_{X|Y} &= \frac{P_X P_{Y|X}}{P_Y} \\ &= \nabla_x \bar{f}(\cdot; Y) \# P_X \end{aligned}
$$

where
$$
\bar{f} = \underset{f \in L^1(\mathcal{X} \times \mathcal{Y})}{\arg \min} \mathbb{E}_{(X,Y) \sim P_X \otimes P_Y} [f(X;Y)] + \mathbb{E}_{(X,Y) \sim P_{XY}} [f^*(X;Y)]
$$

Computational properties:

- Only requires samples $(X_i, Y_i) \sim P_{XY}$ (data-driven/simulation based)
- **Enables construction of "approximate" posterior distributions**
- Allows application of ML tools (stochastic optimization and neural nets)

Conditioning with optimal transport map Theoretical analysis

$$
\begin{array}{l}\text{ \textbf{and} } (X,Y) \sim P_{X,Y} \text{ \textbf{and} } (\bar{X},Y) \sim P_{X} \otimes P_{Y} \\ \text{ \textbf{1}} (f, P_{X,Y}) := \mathbb{E}[f(\bar{X},Y) + f^{*}(X,Y)] \end{array}
$$

(Conditional) Brenier's theorem

 \blacksquare (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique function \overline{f} that solves the variational problem and

$$
\nabla f(\cdot,y)\#P_X=P_{X|Y=y},\quad \text{a.e} \quad y
$$

■ (Sensitivity) Let f be a possibly non-optimal function. Assume $x \mapsto f(x, y)$ is convex and β -smooth for all y . Then,

$$
d(\nabla f(\cdot, Y)\# P_X, P_{X|Y}) \le \sqrt{2\beta \left(J(f) - J(\overline{f})\right)}
$$

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Conditioning with optimal transport map Theoretical analysis

$$
\blacksquare (X,Y) \sim P_{X,Y} \text{ and } (\bar{X},Y) \sim P_X \otimes P_Y
$$

Variational problem: $\min_f J(f, P_{X,Y}) := \mathbb{E}[f(\bar{X},Y) + f^*(X,Y)]$

(Conditional) Brenier's theorem

Golden (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique function \overline{f} that solves the variational problem and

$$
\nabla \overline{f}(\cdot, y) \# P_X = P_{X|Y=y}, \quad \text{a.e} \quad y
$$

■ (Sensitivity) Let f be a possibly non-optimal function. Assume $x \mapsto f(x, y)$ is convex and β -smooth for all y . Then,

 $d(\nabla f(\cdot, Y) \# P_X, P_{X|Y}) \leq \sqrt{2\beta \left(J(f) - J(\overline{f})\right)}.$

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Conditioning with optimal transport map Theoretical analysis

$$
\blacksquare (X,Y) \sim P_{X,Y} \text{ and } (\bar{X},Y) \sim P_X \otimes P_Y
$$

Variational problem: $\min_f J(f, P_{X,Y}) := \mathbb{E}[f(\bar{X},Y) + f^*(X,Y)]$

(Conditional) Brenier's theorem

Golden (Well-posedness) If P_X admits (Lebesgue) density, then, there exists a unique function \overline{f} that solves the variational problem and

$$
\nabla f(\cdot,y)\#P_X=P_{X|Y=y},\quad \text{a.e} \quad y
$$

■ (Sensitivity) Let f be a possibly non-optimal function. Assume $x \mapsto f(x, y)$ is convex and β -smooth for all y . Then,

$$
d(\nabla f(\cdot, Y)\# P_X, P_{X|Y}) \le \sqrt{2\beta \left(J(f) - J(\overline{f})\right)}.
$$

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: an optimal trans- port approach. The Annals of Statistics,

Outline

- **Part I:** Bayes' law and importance sampling
- Part II: Conditioning with optimal transport maps \mathbf{r}
- **Part III:** Application to nonlinear filtering

Outline

-
-
- **Part III:** Application to nonlinear filtering

- \blacksquare X_t is the state (unknown)
- Y_t is the observation

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\},\$

- What is the most likely value of X_t ?
-
-

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior, belief) **Nonlinear filtering:** numerical approximation of the posterior π_t for all t.

- \blacksquare X_t is the state (unknown)
- Y_t is the observation

 \blacksquare ...

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior, belief) **Nonlinear filtering:** numerical approximation of the posterior π_t for all t.

- \blacksquare X_t is the state (unknown)
- Y_t is the observation

 \blacksquare

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior, belief)

Nonlinear filtering: numerical approximation of the posterior π_t for all t.

- \blacksquare X_t is the state (unknown)
- Y_t is the observation

 \blacksquare ...

Questions: Given history of observation $Y_{1:t} := \{Y_1, \ldots, Y_t\}$,

- What is the most likely value of X_t ?
- What is the probability of $X_t \in A$?
- What is the best m.s.e estimate for X_t ?

Answer: given by the conditional distribution $\pi_t = P_{X_t|Y_{1:t}}$ (posterior, belief) **Nonlinear filtering:** numerical approximation of the posterior π_t for all t.

 $\blacksquare \pi_t := \mathsf{P}(X_t|Y_{1:t})$

Two important operations:

Propagation:
$$
\pi \xrightarrow{\text{dynamics}} \mathcal{A}\pi
$$

Conditioning: $\pi \xrightarrow{\text{Bayes law}} B_y(\pi)$

■ (Exponential) filter stability : $\exists \lambda \in (0,1)$ s.t.

- $\blacksquare \pi_t := \mathsf{P}(X_t|Y_{1:t})$
- Two important operations:

Propagation:
$$
\pi \xrightarrow{\text{dynamics}} \mathcal{A}\pi
$$

Conditioning: $\pi \xrightarrow{\text{Bayes law}} B_y(\pi)$

- $\blacksquare \pi_t := \mathsf{P}(X_t|Y_{1:t})$
- Two important operations:

Propagation:
$$
\pi \xrightarrow{\text{dynamics}} \mathcal{A}\pi
$$

Conditioning: $\pi \xrightarrow{\text{Bayes law}} B_y(\pi)$

Recursive update law for the posterior

 $\pi_{t-1} \longrightarrow \mathcal{A} \pi_{t-1} \longrightarrow B_{Y_t}(\mathcal{A} \pi_{t-1}) =: \mathcal{T}_{t,t-1}(\pi_{t-1})$ dynamics Bayes law

- $\blacksquare \pi_t := \mathsf{P}(X_t|Y_{1:t})$
- Two important operations:

Propagation:
$$
\pi \xrightarrow{\text{dynamics}} \mathcal{A}\pi
$$

Conditioning: $\pi \xrightarrow{\text{Bayes law}} B_y(\pi)$

Recursive update law for the posterior

$$
\pi_{t-1} \xrightarrow{\mathsf{dynamics}} \mathcal{A} \pi_{t-1} \xrightarrow{\mathsf{Bayes law}} B_{Y_t}(\mathcal{A} \pi_{t-1}) =: \mathcal{T}_{t,t-1}(\pi_{t-1})
$$

■ (Exponential) filter stability : $\exists \lambda \in (0,1)$ s.t.

 $d(\mathcal{T}_{t,0}(\pi_0), \mathcal{T}_{t,0}(\tilde{\pi}_0)) \leq C\lambda^k d(\pi_0, \tilde{\pi}_0), \quad \forall \pi_0, \tilde{\pi}_0.$

Filter design steps:

exact posterior: $\pi_t = \mathcal{B}_{Y_t}(\pi_{t-1})$

mean-field process: $\bar{X}_t = \nabla \overline{f}_t(\bar{X}_{t-1}, Y_t)$

particle system: $X_t^i = \nabla \hat{f}_t(X_{t-1}^i, Y_t)$

Variational problem:

$$
\pi_t \approx \hat{\pi}_t^{(N)} = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}
$$

Filter design steps:

exact posterior:
$$
\pi_t = \nabla \overline{f}_t(\cdot, Y_t) \# \pi_{t-1}
$$

\nmean-field process:
$$
\overline{X}_t = \nabla \overline{f}_t(\overline{X}_{t-1}, Y_t)
$$

\nparticle system:
$$
X_t^i = \nabla \hat{f}_t(X_{t-1}^i, Y_t)
$$

Variational problem:

$$
\overline{f}_t = \underset{f}{\arg\min} \ J(f, P_{X_t, Y_t})
$$
\n
$$
\hat{f}_t = \underset{f \in \mathcal{F}}{\arg\min} \ J(f, \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, Y_t^i)})
$$

$$
\pi_t \approx \hat{\pi}_t^{(N)} = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}
$$

Filter design steps:

exact posterior:
$$
\pi_t = \nabla \overline{f}_t(\cdot, Y_t) \# \pi_{t-1}
$$

\nmean-field process:
$$
\overline{X}_t = \nabla \overline{f}_t(\overline{X}_{t-1}, Y_t)
$$

\nparticle system:
$$
X_t^i = \nabla \hat{f}_t(X_{t-1}^i, Y_t)
$$

Variational problem:

$$
\overline{f}_t = \underset{f}{\arg\min} \ J(f, P_{X_t, Y_t})
$$
\n
$$
\hat{f}_t = \underset{f \in \mathcal{F}}{\arg\min} \ J(f, \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, Y_t^i)})
$$

$$
\pi_t \approx \hat{\pi}_t^{(N)} = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}
$$

Filter design steps:

exact posterior:
$$
\pi_t = \nabla \overline{f}_t(\cdot, Y_t) \# \pi_{t-1}
$$

\nmean-field process:
$$
\overline{X}_t = \nabla \overline{f}_t(\overline{X}_{t-1}, Y_t)
$$

\nparticle system:
$$
X_t^i = \nabla \hat{f}_t(X_{t-1}^i, Y_t)
$$

Variational problem:

$$
\overline{f}_t = \underset{f}{\arg\min} \ J(f, P_{X_t, Y_t})
$$

$$
\hat{f}_t = \underset{f \in \mathcal{F}}{\arg\min} \ J(f, \frac{1}{N} \sum_{i=1}^N \delta_{(X_t^i, Y_t^i)})
$$

$$
\pi_t \approx \hat{\pi}_t^{(N)} = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}
$$
Theorem

Assume

\blacksquare The exact filter is exponentially stable

- ⊠ Uniform bound $\epsilon_{{\cal F},N}$ on the optimality gap $J(\hat{f}_t) J(\overline{f}_t)$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.

4 Particles are resampled at each step

Then,

$$
d\left(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t\right) \le C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t.
$$

$$
\epsilon_{{\mathcal F},N} \leq \underbrace{\epsilon_{{\mathcal F}}}_{\text{approx. theory}} +
$$

Theorem

Assume

- \blacksquare The exact filter is exponentially stable
- \mathbf{z} Uniform bound $\epsilon_{\mathcal{F},N}$ on the optimality gap $J(\hat{f}_{t})-J(\overline{f}_{t})$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.
- 4 Particles are resampled at each step

$$
d(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t) \le C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t
$$

$$
\epsilon_{{\mathcal F},N} \leq \underbrace{\epsilon_{{\mathcal F}}}_{\text{approx. theory}} +
$$

Theorem

Assume

- \blacksquare The exact filter is exponentially stable
- \mathbf{z} Uniform bound $\epsilon_{\mathcal{F},N}$ on the optimality gap $J(\hat{f}_{t})-J(\overline{f}_{t})$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.

4 Particles are resampled at each step

$$
d\left(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t\right) \le C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t
$$

$$
\epsilon_{\mathcal{F},N} \leq \underbrace{\epsilon_{\mathcal{F}}}_{\text{approx. theory}} +
$$

Theorem

Assume

- \blacksquare The exact filter is exponentially stable
- \mathbf{z} Uniform bound $\epsilon_{\mathcal{F},N}$ on the optimality gap $J(\hat{f}_{t})-J(\overline{f}_{t})$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.
- 4 Particles are resampled at each step

Then,

$$
d\left(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t\right) \le C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t.
$$

$$
\epsilon_{\mathcal{F},N} \leq \underbrace{\epsilon_{\mathcal{F}}}_{\text{approx. theory}} +
$$

Theorem

Assume

- \blacksquare The exact filter is exponentially stable
- \mathbf{z} Uniform bound $\epsilon_{\mathcal{F},N}$ on the optimality gap $J(\hat{f}_{t})-J(\overline{f}_{t})$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.
- 4 Particles are resampled at each step

Then,

$$
d(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t) \leq C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t.
$$

$$
\epsilon_{\mathcal{F},N} \leq \underbrace{\epsilon_{\mathcal{F}}}_{\text{approx. theory}} +
$$

Theorem

Assume

- \blacksquare The exact filter is exponentially stable
- \mathbf{z} Uniform bound $\epsilon_{\mathcal{F},N}$ on the optimality gap $J(\hat{f}_{t})-J(\overline{f}_{t})$
- **3** The function $\hat{f}_t(\cdot, y)$ is convex and β -smooth for all t and y.
- 4 Particles are resampled at each step

Then,

$$
d(\frac{1}{N}\sum_{i=1}^N \delta_{X_t^i}, \pi_t) \leq C\left(\sqrt{2\beta\epsilon_{\mathcal{F},N}} + \frac{1}{\sqrt{N}}\right), \quad \forall t.
$$

Optimality gap $\epsilon_{F,N}$ has bias-variance decomposition

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

\n
$$
Y_t = X_t + \sigma_W W_t,
$$

-
-
-

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

\n
$$
Y_t = X_t + \sigma_W W_t,
$$

- Ensemble Kalman filter (EnKF)
- sequential importance re-sampling (SIR)
- Optimal Transport (OT)

Optimal Transport Filter Numerical example

$$
X_t = (1 - \alpha)X_{t-1} + \sigma_V V_t, \quad X_0 \sim \mathcal{N}(0, I_n),
$$

$$
Y_t = X_t^2 + \sigma_W W_t,
$$

- Ensemble Kalman filter (EnKF)
- sequential importance re-sampling (SIR)
- Optimal Transport (OT)

Optimal Transport Filter Numerical example: Lorenz 63

Trajectory of the particles $\overline{}$

Optimal Transport Filter Numerical example: Lorenz 63

Trajectory of the particles

mean-squared error (mse) in estimating the state $\mathcal{L}_{\mathcal{A}}$

Numerical example: Image in-painting

 $X \sim N(0, I_{100}),$ $Y_t = h(G(X), c_t) + W_t$ $G:\mathbb{R}^{100}\rightarrow\mathbb{R}^{28\times28}$ (pre-trained generator)

Numerical example: Image in-painting

$$
X \sim N(0, I_{100}),
$$

\n
$$
Y_t = h(G(X), c_t) + W_t,
$$

\n
$$
G: \mathbb{R}^{100} \to \mathbb{R}^{28 \times 28} \text{ (pre-trained generator)}
$$

Numerical example: Attitude estimation

D. Grange, M. Al-Jarrah, R. Baptista, A. Taghvaei, T. Georgiou, S. Phillips, A. Tannenbaum, Computational optimal transport and filtering on Riemannian manifolds, IEEE Control Systems Letters, 2023

Summary

Mathematical model:

Nonlinear filtering: compute the posterior $\pi_k = P(X_k|Y_{1:k})$

$$
\xrightarrow{\pi_{k-1}} \pi_k \xrightarrow{\pi_k} \pi_{k+1} \xrightarrow{\cdots}
$$

OT approach:

Variational problem:

$$
T_k = \nabla_x \bar{f}_k, \quad \text{where} \quad \bar{f}_k = \underset{f \in \mathcal{F}}{\arg\min} \ J^{(N)}(f; \{ (X^i_k, Y^i_k) \})
$$

References

- A. Taghvaei, B. Hosseini, An optimal transport formulation of Bayes' law for nonlinear filtering algorithms, IEEE Conference on Decision and Control (CDC), 2022
- M. Al-Jarrah, B. Hosseini, A. Taghvaei, Optimal Transport Particle Filters, IEEE Conference on Decision and Control (CDC), 2023
- M. Al-Jarrah, N. Jin, B. Hosseini, A. Taghvaei, Optimal Transport-based Nonlinear Filtering in High-dimensional Settings, arXiv:2310.13886
- B. Hosseini, AW. Hsu, A. Taghvaei, Conditional Optimal Transport on Function Spaces, arXiv:2311.05672
- D. Grange, M. Al-Jarrah, R. Baptista, A. Taghvaei, T. Georgiou, S. Phillips, A. Tannenbaum, Computational optimal transport and filtering on Riemannian manifolds, IEEE Control Systems Letters, 2023
- D. Grange, R. Baptista, A. Taghvaei, A. Tannenbaum, S. Phillips, Distributed Nonlinear Filtering using Triangular Transport Maps, IEEE American Control Conference (ACC), 2024

Acknowledgments

Mohammad Al-Jarrah Jenny Jin Michele Martino

