2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will introduce
one of the most basic techniques of dynamics: interpreting a differential equation
as a vector field.

Consider the following nonlinear differential equation:

X =sin x. (1)

To emphasize our point about formulas versus pictures, we have chosen one of the
few nonlinear equations that can be solved in closed form. We separate the vari-
ables and then integrate:

dx

dt=——,
Sin x

which implies

t=jcscxdx

=—In|cscx+cotx| + C.

To evaluate the constant C, suppose that x = x, at t =0. Then C = ln[ CsC x, +cot x, ‘

Hence the solution is

csc x, + cot x
t=In| —2——=0

(2)

cscx +cotx

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose x, = m/4; describe the qualitative features of the solution x(#)
for all £ > 0. In particular, what happens as t — o ?

2. For an arbitrary initial condition x,, what is the behavior of x(¢) as
{00 ?

Think about these questions for a while, to see that formula (2) is not transparent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in Figure
2.1.1. We think of ¢ as time, x as the position of an imaginary particle moving
along the real line, and x as the velocity of that particle. Then the differential
equation x = sinx represents a vector field on the line: it dictates the velocity vec-
tor x at each x . To sketch the vector field, it is convenient to plot x versus x, and
then draw arrows on the x-axis to indicate the corresponding velocity vector at
each x. The arrows point to the right when x > 0 and to the left when x <0.
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Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that fluid
is flowing steadily along the x-axis with a velocity that varies from place to
place, according to the rule x = sinx. As shown in Figure 2.1.1, the flow is to the
right when x >0 and to the left when x < 0. At points where x =0, there is no
flow; such points are therefore called fixed points. You can see that there are two
kinds of fixed points in Figure 2.1.1: solid black dots represent stable fixed
points (often called attractors or sinks, because the flow is toward them) and
open circles represent unstable fixed points (also known as repellers or
sources).

Armed with this picture, we can now easily understand the solutions to the dif-
ferential equation x = sinx. We just start our imaginary particle at x, and watch
how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at x, = 7/4 moves to the
right faster and faster until it crosses x = /2 (where sinx reaches its
maximum). Then the particle starts slowing down and eventually ap-
proaches the stable fixed point x =7 from the left. Thus, the qualita-
tive form of the solution is as shown in Figure 2.1.2.

Note that the curve is concave up at first, and then concave down;
this corresponds to the initial acceleration for x < /2, followed by the
deceleration toward x = 7.

2. The same reasoning applies to any initial condition x,. Figure 2.1.1
shows thatif x >0 initially, the particle heads to the right and asymptot-

ically approaches the nearest sta-
ble fixed point. Similarly, if
T — = - - - - === x <0 initially, the particle ap-
proaches the nearest stable fixed
point to its left. If x =0, then x
remains constant. The qualitative
form of the solution for any ini-

¢ tial condition is sketched in Fig-
ure 2.1.3.
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Figure 2.1.2
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Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed | x| is greatest. Butin
many cases qualitative information is what we care about, and then pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system x = f(x). We just need to draw the graph of f(x) and then use it to sketch
the vector field on the real line (the x-axis in Figure 2.2.1).

x
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Figure 2.2.1
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As before, we imagine that a fluid is flowing along the real line with a local veloc-
ity f(x). This imaginary fluid is called the phase fluid, and the real line is the
phase space. The flow is to the right where f(x) > 0 and to the left where f(x)<O.
To find the solution to x = f(x) starting from an arbitrary initial condition x,, we
place an imaginary particle (known as a phase point) at x, and watch how it is car-
ried along by the flow. As time goes on, the phase point moves along the x-axis
according to some function x(¢) . This function is called the frajectory based at x,,
and it represents the solution of the differential equation starting from the initial
condition x,. A picture like Figure 2.2.1, which shows all the qualitatively differ-
ent trajectories of the system, is called a phase portrait.

The appearance of the phase portrait is controlled by the fixed points x *, de-
fined by f(x*)=0; they correspond to stagnation points of the flow. In Figure
2.2.1, the solid black dot is a stable fixed point (the local flow is toward it) and the
open dot is an unstable fixed point (the flow is away from it).

In terms of the original differential equation, fixed points represent equilib-
rium solutions (sometimes called steady, constant, or rest solutions, since if
x = x* initially, then x(z) = x * for all time). An equilibrium is defined to be sta-
ble if all sufficiently small disturbances away from it damp out in time. Thus sta-
ble equilibria are represented geometrically by stable fixed points. Conversely,
unstable equilibria, in which disturbances grow in time, are represented by unsta-
ble fixed points.

EXAMPLE 2.2.1:

Find all fixed points for x = x* —1, and classify their stability.

Solution: Here f(x)=x*>—1. To find the fixed points, we set f(x*)=0 and
solve for x *. Thus x* = +1. To determine stability, we plot x* —1 and then sketch
the vector field (Figure 2.2.2). The flow is to the right where x> —1>0 and to the
left where x2 —1< 0. Thus x* = —1 is stable, and x* =1 is unstable. m

f=x"-1

S

Figure 2.2.2
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