First-order Taylor expansion: Assume $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable with Jacobian $\frac{\partial f}{\partial x}$. For any point $\bar{x} \in \mathbb{R}^n$, consider the first-order Taylor approximation

$$
f(x) \approx f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x}).
$$

Define the approximation error as

$$
R(x,\bar{x}) := f(x) - f(\bar{x}) - \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x}).
$$

• If the derivative is continuous, i.e. $f \in \mathcal{C}^1$, then

$$
\lim_{x \to \bar{x}} \frac{\|R(x,\bar{x})\|}{\|x-\bar{x}\|} = 0 \quad \text{or} \quad R(x,\bar{x}) = o(\|x-\bar{x}\|)
$$
\n(0.1)

The little $o(\Vert x - \bar{x} \Vert)$ notation means that the error converges to zero faster than a linear rate $\Vert x - \bar{x} \Vert$.

• If f is twice-differentiable with continuous second-derivative, i.e. $f \in C^2$, then there exists a constant C and a radius r such that for all $x \in B_r(\bar{x}) := \{x \in \mathbb{R}^n; ||x - \bar{x}|| \le r\}$

$$
||R(x,\bar{x})|| \le C||x-\bar{x}||^2, \quad \text{or} \quad R(x,\bar{x}) = O(||x-\bar{x}||^2)
$$
 (0.2)

The big $O(||x - \bar{x}||^2)$ notation means that the error converges to zero with a quadratic rate $||x - \bar{x}||^2$.

• If the second-order derivative is uniformly bounded for all $x \in \mathbb{R}^n$, then the error bound [\(0.2\)](#page-0-0) holds for all $x \in \mathbb{R}^n$ (i.e. the radius r can be selected to be ∞).

Example 1. Consider the example $f(x) = x\sqrt{x}$. Its first-order and second-order derivatives are $f'(x) =$ 3 $\overline{2}$ **Altergally 1.** Consider the example $f(x) = x\sqrt{x}$. Its first-order and second-order derivatives and $f''(x) = \frac{3}{4\sqrt{x}}$. Therefore $f \in C^1$ but $f \notin C^2$. Its Taylor approximation around $\bar{x} = 0$ is

$$
f(x) \approx f(0) + f'(0)x = 0.
$$

The approximation error

$$
|R(x,0)| = |x\sqrt{x}|
$$

satisfies the limit condition [\(0.1\)](#page-0-1)

$$
\lim_{x \to 0} \frac{R(x, 0)}{|x|} = \lim_{x \to 0} \sqrt{x} = 0
$$

while it does not satisfy the bound [\(0.2\)](#page-0-0)

$$
|R(x,0)| = |x\sqrt{x}| \nleq Cx^2
$$

for any constant C*.*