First-order Taylor expansion: Assume $f : \mathbb{R}^n \to \mathbb{R}^m$ is differentiable with Jacobian $\frac{\partial f}{\partial x}$. For any point $\bar{x} \in \mathbb{R}^n$, consider the first-order Taylor approximation

$$f(x) \approx f(\bar{x}) + \frac{\partial f}{\partial x}(\bar{x})(x - \bar{x})$$

Define the approximation error as

$$R(x,\bar{x}) := f(x) - f(\bar{x}) - \frac{\partial f}{\partial x}(\bar{x})(x-\bar{x}).$$

• If the derivative is continuous, i.e. $f \in C^1$, then

$$\lim_{x \to \bar{x}} \frac{\|R(x,\bar{x})\|}{\|x-\bar{x}\|} = 0 \quad \text{or} \quad R(x,\bar{x}) = o(\|x-\bar{x}\|)$$
(0.1)

The little $o(||x - \bar{x}||)$ notation means that the error converges to zero faster than a linear rate $||x - \bar{x}||$.

If f is twice-differentiable with continuous second-derivative, i.e. f ∈ C², then there exists a constant C and a radius r such that for all x ∈ B_r(x̄) := {x ∈ ℝⁿ; ||x − x̄|| ≤ r}

$$||R(x,\bar{x})|| \le C ||x-\bar{x}||^2$$
, or $R(x,\bar{x}) = O(||x-\bar{x}||^2)$ (0.2)

The big $O(||x - \bar{x}||^2)$ notation means that the error converges to zero with a quadratic rate $||x - \bar{x}||^2$.

If the second-order derivative is uniformly bounded for all x ∈ ℝⁿ, then the error bound (0.2) holds for all x ∈ ℝⁿ (i.e. the radius r can be selected to be ∞).

Example 1. Consider the example $f(x) = x\sqrt{x}$. Its first-order and second-order derivatives are $f'(x) = \frac{3}{2}\sqrt{x}$ and $f''(x) = \frac{3}{4\sqrt{x}}$. Therefore $f \in C^1$ but $f \notin C^2$. Its Taylor approximation around $\bar{x} = 0$ is

$$f(x) \approx f(0) + f'(0)x = 0.$$

The approximation error

$$|R(x,0)| = |x\sqrt{x}|$$

satisfies the limit condition (0.1)

$$\lim_{x \to 0} \frac{R(x,0)}{|x|} = \lim_{x \to 0} \sqrt{x} = 0$$

while it does not satisfy the bound (0.2)

$$|R(x,0)| = |x\sqrt{x}| \leq Cx^2$$

for any constant C.